Online Integer Covering in Random Order

Anupam Gupta

Carnegie Mellon University

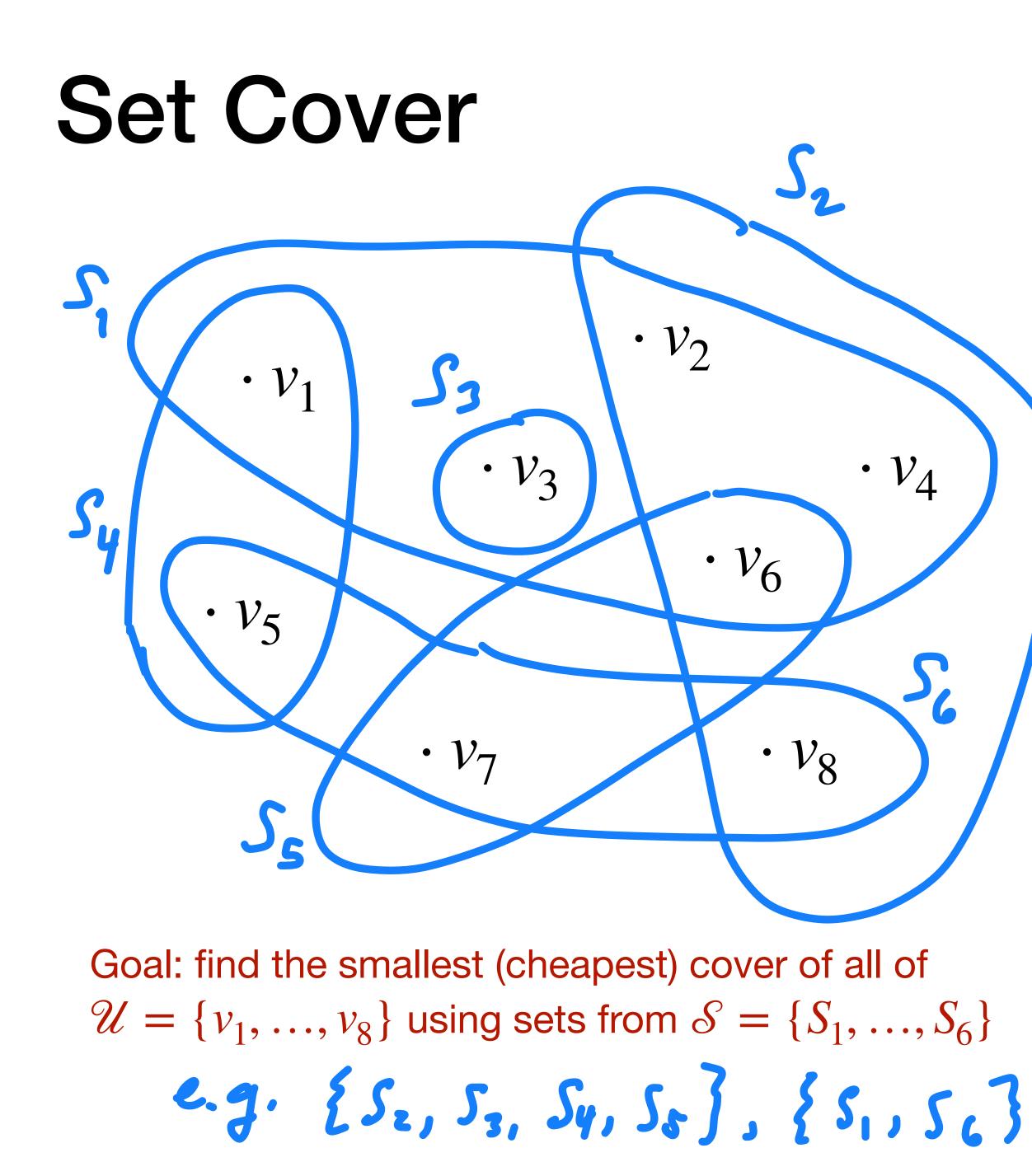
November 10, 2022

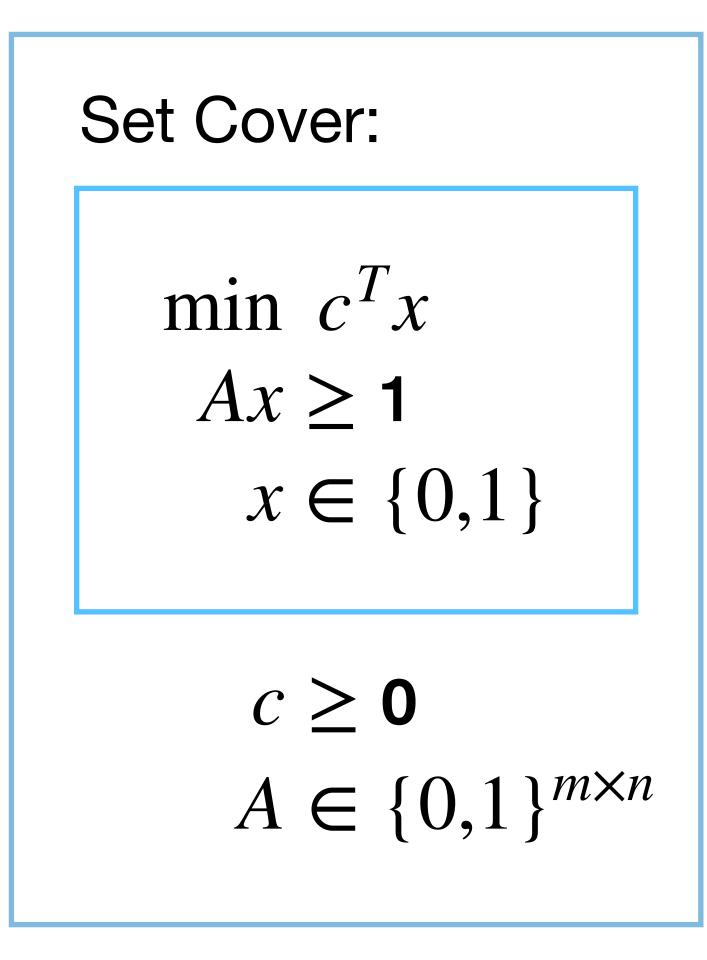
Gregory Kehne

Roie Levin

HARVARD UNIVERSITY

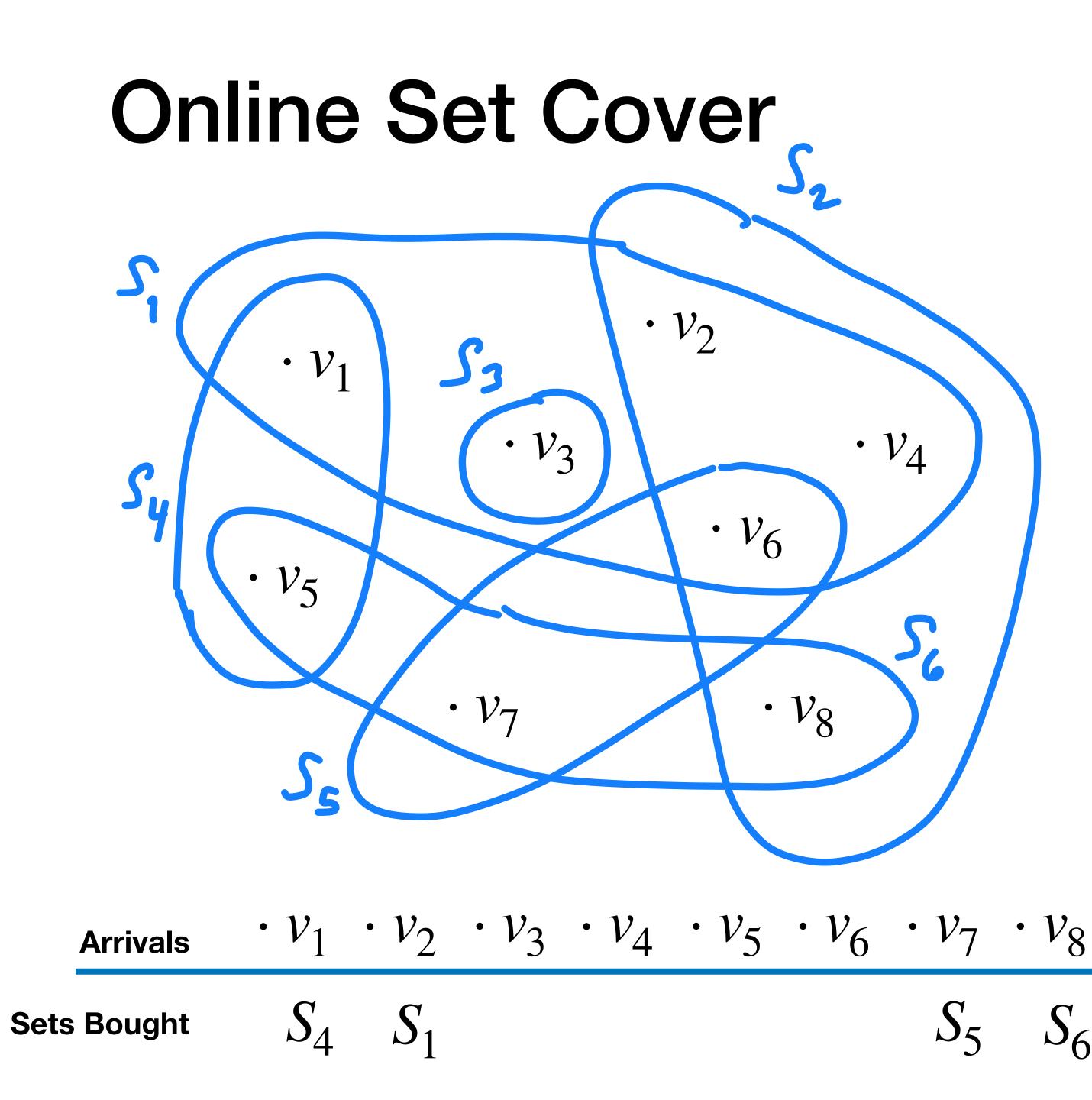
Duke University

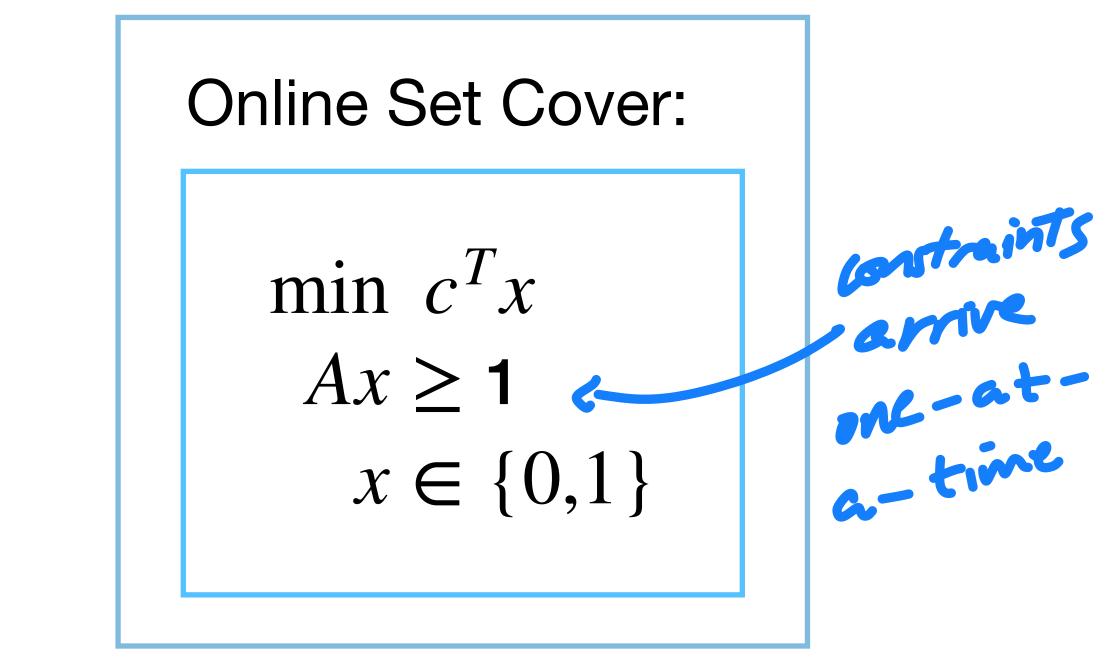




 $|\mathcal{U}| = n$ elements, $|\mathcal{S}| = m$ sets

 $V_1: x_1 + x_4 \ge 1$





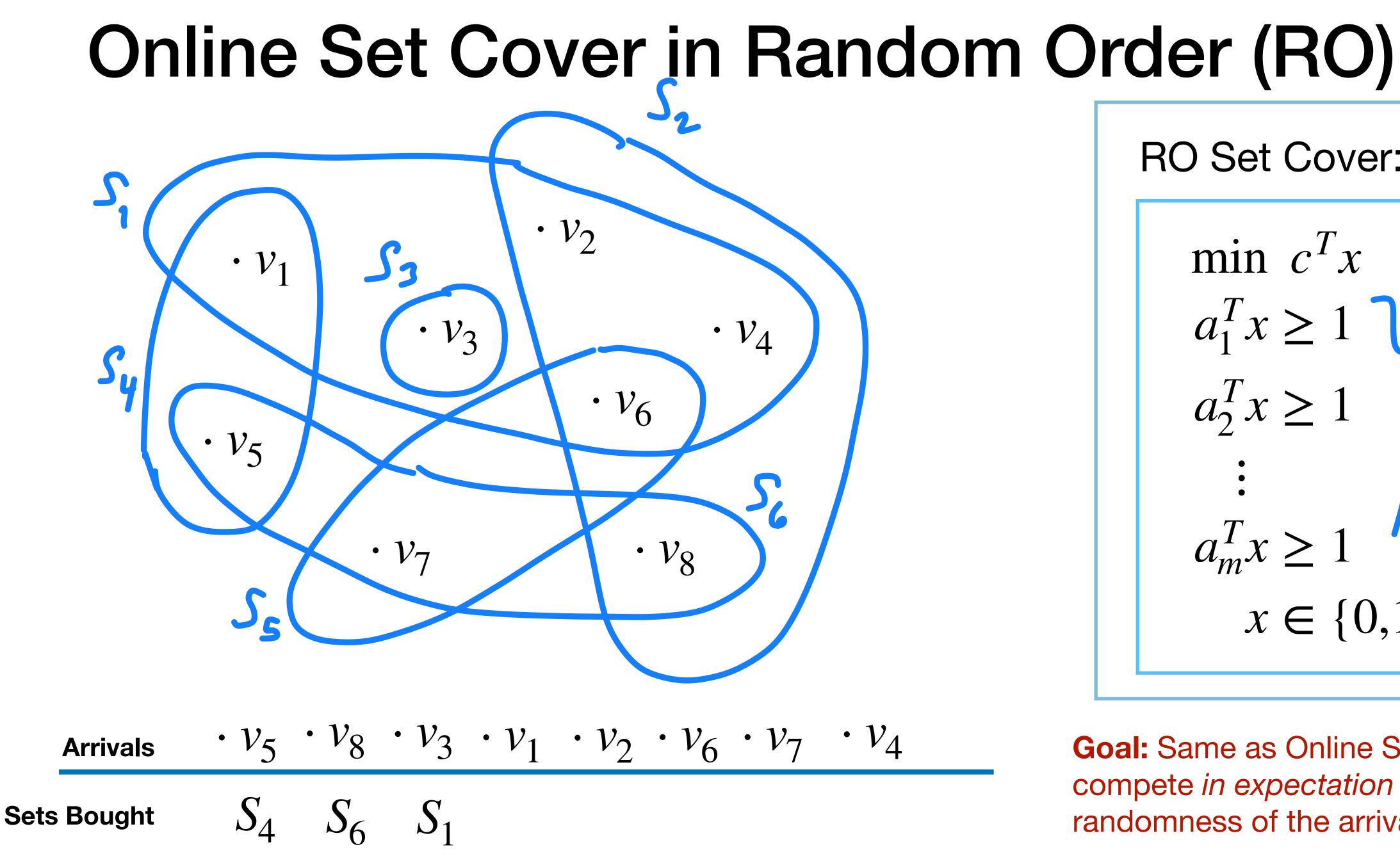
Goals:

 S_6

- Satisfy each constraint upon arrival
- Maintain a solution which is monotone increasing

Compete with the best solution in retrospect

 $\{S_1, S_6\}$

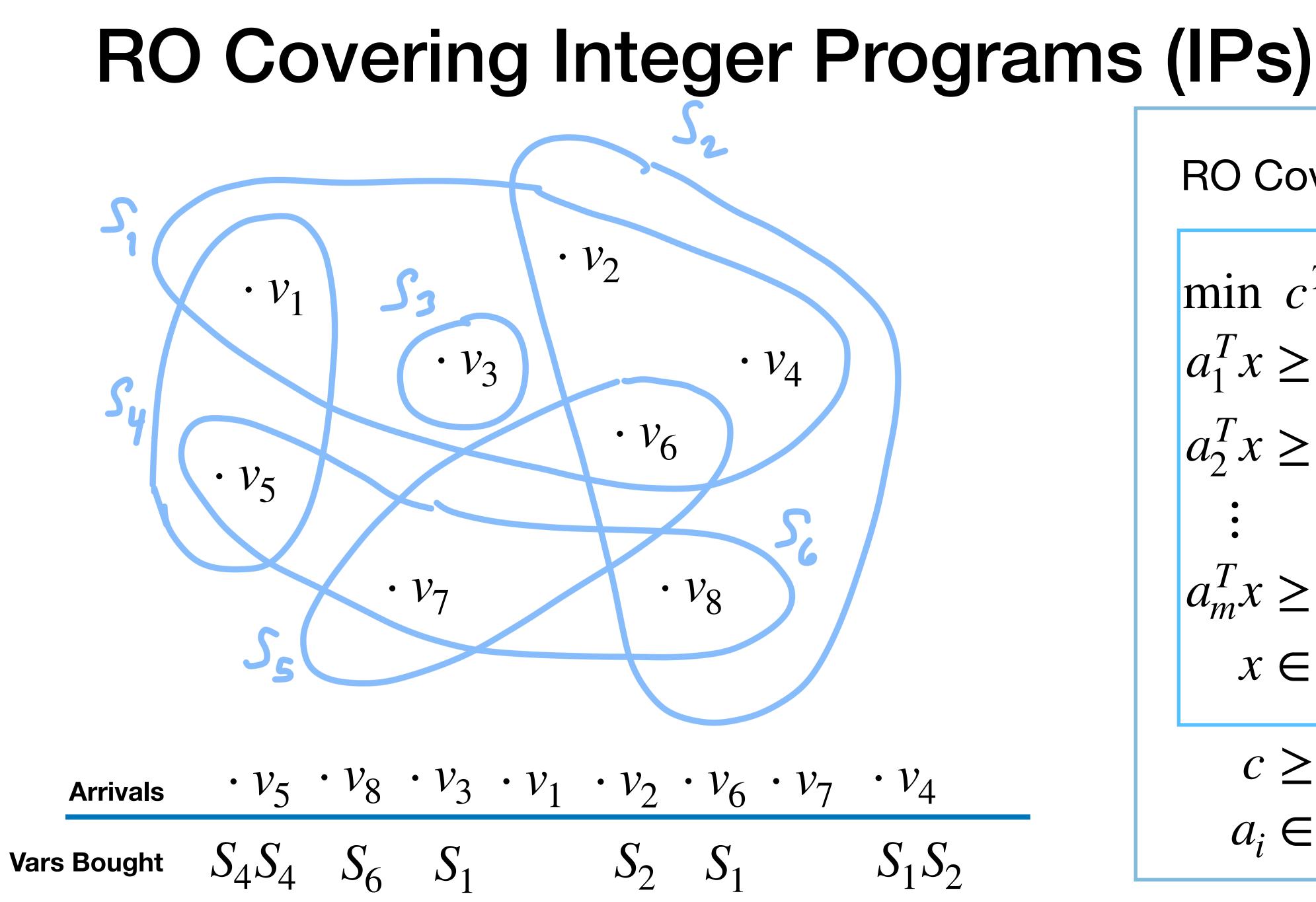


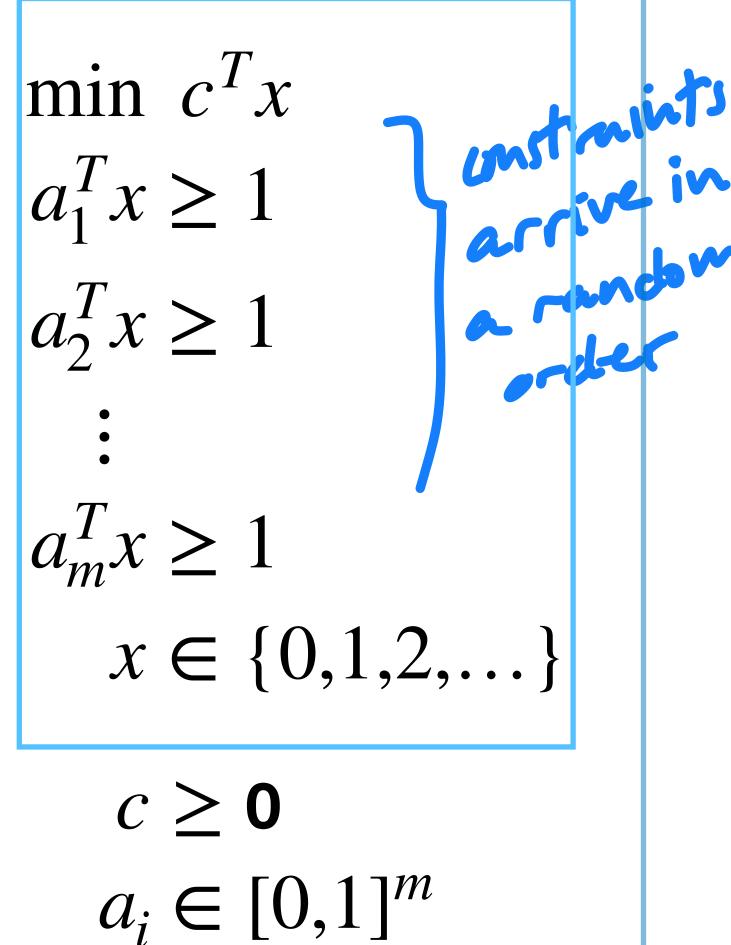
 $\cdot v_4$

RO Set Cover:

min $c^T x$ instruction arrive in $a_1^T x \ge 1$ $a_2^T x \ge 1$ $a_m^T x \ge 1$ $x \in \{0,1\}$

Goal: Same as Online Set Cover, but compete *in expectation* over the randomness of the arrival order





 S_1S_2

The Landscape			
Offline	log n + 1 [Johnson '74], [Lo		
Online Adversarial	$O(\log m \log m)$ [Alon Awerbuch A $\Omega(\log m \log m)$ [Korman '04]		
Online Stochastic	Θ(log mn) [Grandoni Gupta L		
Online RO	Θ(log mn) [Gupta K. Levin '2		

ovasz '75], [Chvatal '79]

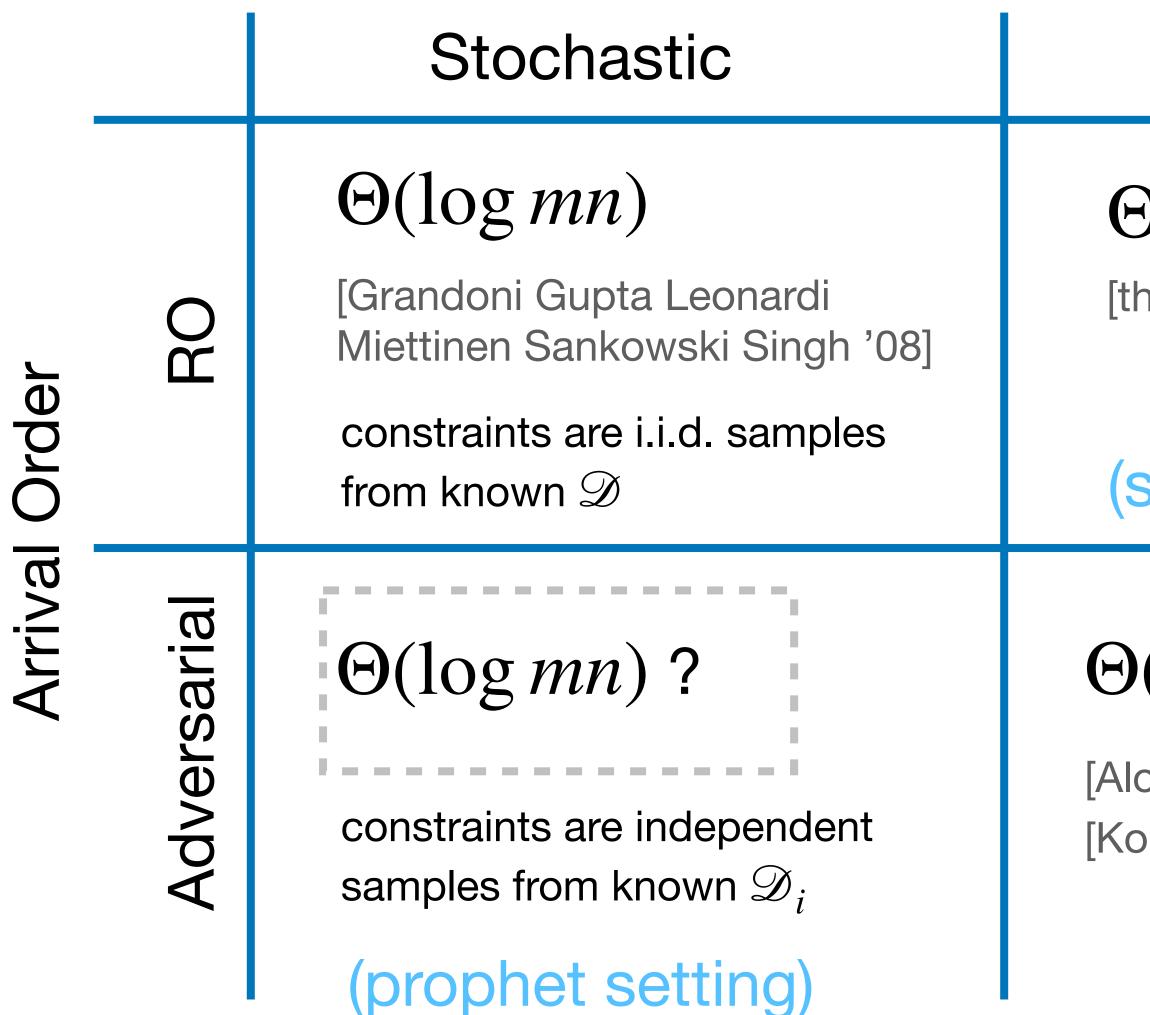
 $\log n$) Azar Buchbinder Naor '03] $\log n$)

Theorem: (Gupta K. Levin): There is a randomized poly-time algorithm for RO covering IPs with an expected competitive ratio of $O(\log mn)$

Leonardi Miettinen Sankowski Singh '08]

The Landscape from a different view

Instance



Adversarial

Θ(log mn) [this talk] What makes online integer covering (online set cover) harder than offline?

(secretary setting)

$\Theta(\log m \log n)$

[Alon Awerbuch Azar Buchbinder Naor '03] [Korman '04]

Warmup: LearnOrCover (proof of concept)

How can we get a (randomized) $O(\log mn)$ -approximation to ROSC online, supposing

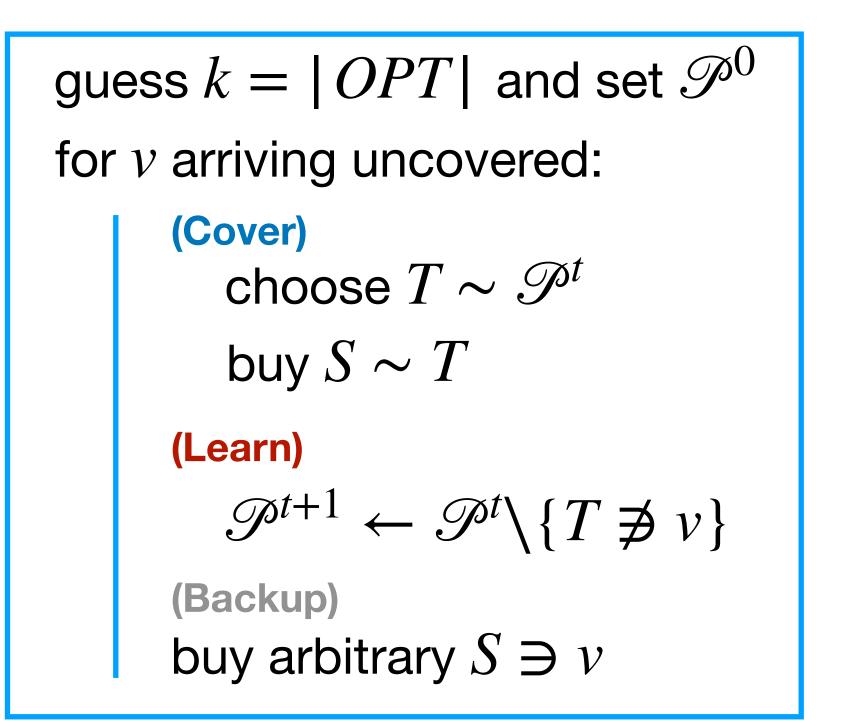
- all sets have unit cost, and
- we are allowed exponential time?

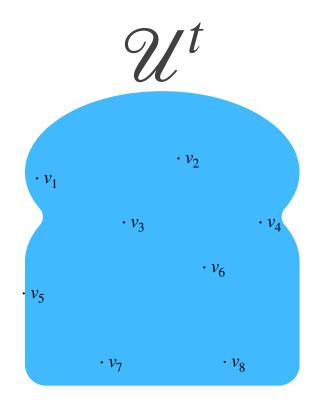
Unit-Cost Set Cover:

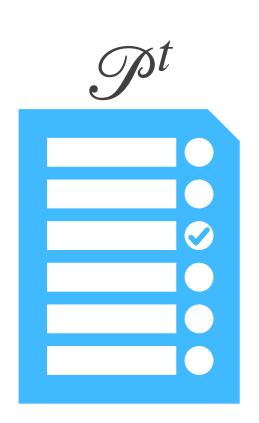
min $\mathbf{1}^T x$ $a_1^T x \ge 1$ $a_2^T x \ge 1$ $a_n^T x \ge 1$ $x \in \{0,1\}$ $a_i \in \{0,1\}^m$

- = n elements
- $|\mathcal{S}| = m \text{ sets}$

Warmup: LearnOrCover (proof of concept)







 $\mathcal{U}^0 = \mathcal{U}$

S covers at least $\frac{|\mathcal{U}^t|}{4k}$ elements in expectation $|\mathcal{U}^{t+1}| \leq \left(1 - \frac{1}{4k}\right) |\mathcal{U}^t|$ in expectation.

at least 1/4 of $T \in \mathscr{P}^t$ pruned in expectation $\mathscr{P}^{0} = \begin{pmatrix} \mathscr{S} \\ k \end{pmatrix} \qquad |\mathscr{P}^{t+1}| \leq \frac{3}{4} |\mathscr{P}^{t}| \text{ in expectation.}$

Case 1: $\geq 1/2$ of $T \in \mathscr{P}^t$ cover $\geq 1/2$ of \mathscr{U}^t

Case 2: > 1/2 of $T \in \mathscr{P}^t$ cover < 1/2 of \mathscr{U}^t

Warmup: LearnOrCover (proof of concept) Case 1: $\geq 1/2$ of $T \in \mathscr{P}^t$ cover $\geq 1/2$ of \mathscr{U}^t \mathcal{U}^t $\mathbb{E}|\mathcal{U}^{t+1}| \le \left(1 - \frac{1}{4k}\right)|\mathcal{U}^t|$ $|\mathcal{U}^0| = n$, so $O(k \log n)$ **Cover** steps suffice $|\mathcal{P}^0| \leq m^k$, so $O(k \log m)$ Learn steps suffice Once $\mathbb{E}[\mathcal{U}^t] = 1$ or $\mathbb{E}[\mathcal{P}^t] = 1$ we are done, so $OPT \cdot O(\log mn)$ steps suffice! In expectation over the randomness of In other words: the arrival order + the algorithm, its $\Phi(t) = k \log |\mathcal{U}^t| + \log |\mathcal{P}^t|$ solution will cost $O(\log mn)$ times the Potential: cost of the optimal offline solution. $0 \le \Phi(0) \le k \log n + k \log m$ every step decreases $\Phi(t)$ by $\Omega(1)$ in expectation, so $OPT \cdot O(\log mn)$ steps suffice!

Case 2: > 1/2 of $T \in \mathscr{P}^t$ cover < 1/2 of \mathscr{U}^t

$$\mathbb{E}|\mathcal{P}^{t+1}| \leq \frac{3}{4}|\mathcal{P}^t|$$

LearnOrCover in Polynomial Time (unit cost: c = 1)

```
(estimate k = |OPT|)
   initialize x \leftarrow k/m
    for v arriving uncovered (round t)
          (Cover)
          buy random S \sim x
          (Learn)
         if x_v \le (e-1)^{-1}:
              x_S \leftarrow e \cdot x_S \text{ for all } S \ni v
             x \leftarrow k \frac{x}{\|x\|}
          (Backup)
          buy arbitrary S \ni v
> x_v = \sum x_S is coverage of v by x
```

 $S \ni v$

$$\mathcal{F}^{KL(x^* \parallel x^t)} = \sum_{S} x_S^* \log\left(\frac{x_S^*}{x_S^t}\right)$$
Potential: $\Phi(t) = c_1 \cdot KL(x^* \parallel x^t) + c_2 \cdot k \log |\mathcal{U}^t|$

Claim 1: $\Phi(0) = O(k \log mn)$ and $\Phi(t) \ge 0$

Claim 2: $\mathbb{E}[\Delta \Phi] \leq -1$ whenever *v* arrives uncovered $KL(x^*||x^t)$ and $k \log |\mathcal{U}^t|$ are nonincreasing <u>Case 1</u>: $\mathbb{E}_v[x_v] > 1/4$

expected change to $k \log |\mathcal{U}^t|$ is $-\Omega(1)$ <u>Case 2</u>: $\mathbb{E}_v[x_v] \le 1/4$ expected change to $KL(x^*||x^t)$ is $-\Omega(1)$

Claim 1 \land Claim 2 \Rightarrow LearnOrCover has $O(\log mn)$ CR

LearnOrCover in Polynomial Time (unit cost: c = 1)

log

```
(estimate k = |OPT|)
 initialize x \leftarrow k/m
  for v arriving uncovered (round t)
        (Cover)
        buy random S \sim x
        (Learn)
        if x_v \le (e-1)^{-1}:
           x_{S} \leftarrow e \cdot x_{S} \text{ for all } S \ni vx \leftarrow k \frac{x}{\|x\|}
         (Backup)
        buy arbitrary S \ni v
x_v = \sum x_S^{t-1} is coverage of v by x^{t-1}
```

 $S \ni v$

Lemma 1: if $\mathbb{E}_{v}[x_{v}] > 1/4$, then the expected change to $k \log |\mathcal{U}^t|$ is $-\Omega(1)$.

$$\frac{\operatorname{Proof:}}{\log |\mathcal{U}^{t}| - \log |\mathcal{U}^{t-1}| = \log \left(1 - \frac{|\mathcal{U}^{t-1}| - |\mathcal{U}^{t}|}{|\mathcal{U}^{t-1}|} \right) \leq \frac{-1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{I}\{S \ni v\}$$

$$k\mathbb{E}_{S}[\Delta \log |\mathcal{U}^{t}|] \leq \frac{-k}{|\mathcal{U}^{t-1}|} \sum_{s \in \mathcal{U}^{t-1}} \sum_{v \in \mathcal{U}^{t-1}} \sum_{v \in \mathcal{U}^{t-1}} \mathbb{I}\{S \equiv v\}$$

$$= \frac{-1}{|\mathcal{U}^{t-1}|} \sum_{v \in \mathcal{U}^{t-1}} \sum_{s \ni v} x_{s}^{t-1} \int_{s \to v} x_{$$

LearnOrCover in Polynomial Time (unit cost: c = 1)

```
(estimate k = |OPT|)
initialize x \leftarrow k/m
                                                           Proof
for v arriving uncovered (round t)
                                                           \sum x_S^*
       (Cover)
       buy random S \sim x
       (Learn)
      if x_v \le (e-1)^{-1}:
          x_{S} \leftarrow e \cdot x_{S} \text{ for all } S \ni vx \leftarrow k \frac{x}{\|x\|}
       (Backup)
       buy arbitrary S \ni v
```

 $x_v = \sum_{S \ni v} x_S^{t-1} \text{ is coverage of } v \text{ by } x^{t-1}$

Lemma 2: if $\mathbb{E}_{v}[x_{v}] \leq 1/4$, then the expected change to $KL(x^{*}||x^{t})$ is $-\Omega(1)$.

$$\sum_{S} \frac{1}{x_{S}^{*}} \log \left(\frac{x_{S}^{*}}{x_{S}^{t}} \right) - \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{*}}{x_{S}^{t-1}} \right) = \sum_{S} x_{S}^{*} \log \left(\frac{x_{S}^{t-1}}{x_{S}^{t}} \right)$$

$$= \sum_{S} x_{S}^{*} \log \left(x_{S}^{t-1} \frac{\sum_{T} x_{T}^{t-1} \cdot e^{\mathbb{I}\{T \ni \nu\}}}{k \cdot x_{S}^{t-1} \cdot e^{\mathbb{I}\{S \ni \nu\}}} \right)$$

$$= \sum_{S} x_{S}^{*} \log \left(\frac{1}{k} \sum_{T} x_{T}^{t-1} \cdot e^{\mathbb{I}\{T \ni \nu\}} \right) - \sum_{S \ni \nu} x_{S}^{*} \log \left(\frac{1}{k} \sum_{S} x_{S}^{t-1} + \frac{1}{k} \sum_{S \ni \nu} (e-1) \cdot x_{S}^{t-1} \right) - 1$$

$$\leq (e-1) \cdot x_{\nu} - 1$$

$$\mathbb{E}_{\nu}[\Delta KL] \leq -\Omega(1)$$

LearnOrCover in Polynomial Time (unit cost: c = 1)

```
(estimate k = |OPT|)
    initialize x \leftarrow k/m
    for v arriving uncovered (round t)
          (Cover)
          buy random S \sim x
          (Learn)
          if x_v \le (e-1)^{-1}:
              x_S \leftarrow e \cdot x_S \text{ for all } S \ni v
             x \leftarrow k \frac{x}{\|x\|}
          (Backup)
          buy arbitrary S \ni v
> x_v = \sum x_S is coverage of v by x
```

 $S \ni v$

Potential:

 $\Phi(t) = c_1 \cdot KL(x^* || x^t) + c_2 \cdot k \log |\mathcal{U}^t|$

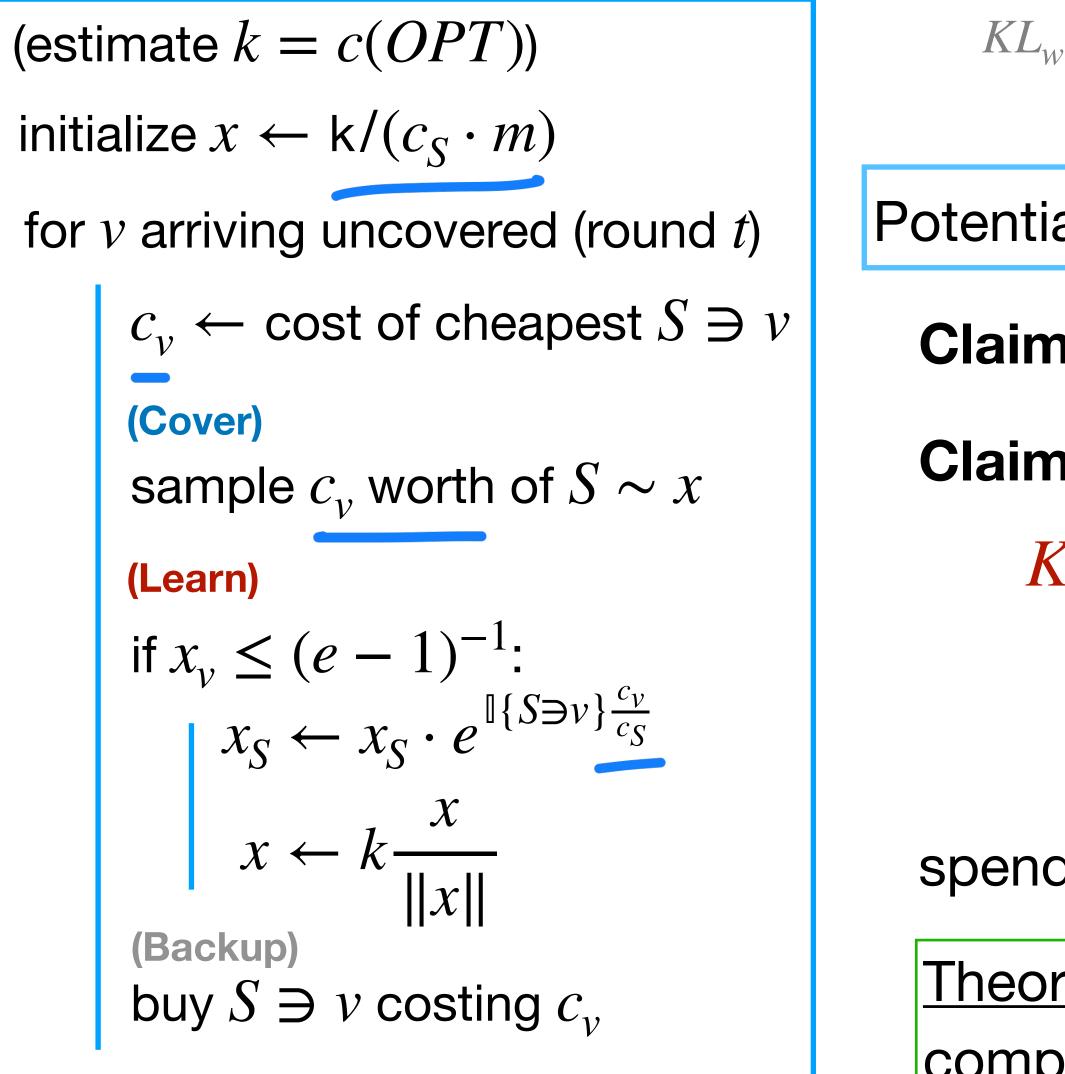
Claim 1: $\Phi(0) = O(k \log mn)$ and $\Phi(t) \ge 0$

Claim 2: $\mathbb{E}[\Delta \Phi] \leq -1$ whenever v arrives uncovered $KL(x^*||x^t)$ and $k \log |\mathcal{U}^t|$ are nonincreasing expected change to $k \log |\mathcal{U}^t|$ is $-\Omega(1)$ <u>or</u> expected change to $KL(x^* || x^t)$ is $-\Omega(1)$

punchline: $0 \leq \mathbb{E}[\Phi(t)] \leq \Phi(0) - \Omega(t)$

<u>Theorem</u> (Gupta K. Levin): LearnOrCover has a competitive ratio of $O(\log mn)$ for unit-cost RO set cover.

LearnOrCover OSC with General Costs



$$\int_{a} (x^* ||x^t) = \sum_{s} c_s \cdot x_s^* \log\left(\frac{x_s^*}{x_s^t}\right) \int_{a} \int_{v \in \mathcal{U}^t} \rho^t = \sum_{v \in \mathcal{U}^t} \rho^t dv$$
al: $\Phi(t) = c_1 \cdot KL_w(x^* ||x^t) + c_2 \cdot k \log |\rho^t/k$
and $\Phi(t) = O(k \log mn)$ and $\Phi(t) \ge 0$
and $\Phi(t) \ge 0$
and $\Phi(t) \ge 0$
and $\Phi(t) \ge 0$
by $\Phi(t) = C_v$ whenever v arrives uncovered $\Phi(t) \ge 0$
by $\Phi(t) = C_v$ whenever v arrives uncovered $\Phi(t) \ge 0$
by $\Phi(t) = C_v$ whenever v arrives $\Phi(t) \ge 0$
by $\Phi(t) = C_v$ whenever v arrives $\Phi(t) \ge 0$
by $\Phi(t) \ge 0$
by \Phi

<u>Theorem</u> (Gupta **K**. Levin): LearnOrCover has a competitive ratio of $O(\log mn)$ for RO set cover.

LearnOrCover for RO Covering IPs

(estimate k = c(OPT)) initialize $x \leftarrow k/(c_S \cdot m)$ for *v* arriving uncovered (round *t*) $c_v \leftarrow \text{cost of cheapest cover}$ (Cover) sample c_v worth of $S \sim x$ (Learn) $\text{if } x_{v} \leq (e-1)^{-1}: \\ x_{S} \leftarrow x_{S} \cdot e^{\mathbb{I}\{S \ni v\} \frac{c_{v}}{c_{S}} a_{vS}} \\ x \leftarrow k \frac{x}{\|x\|}$ (Backup) buy $S \ni v$ costing c_v

- ...very similar!
- Major changes are:
- incorporating partial coverage:
- measure ρ^t according to
- remaining uncoverage, sample
- "sets" according to a_{vS}
- •analysis of $\mathbb{E}[\Delta \log |\mathcal{U}|]$ is
- more involved (independent
- sampling with partial coverage)

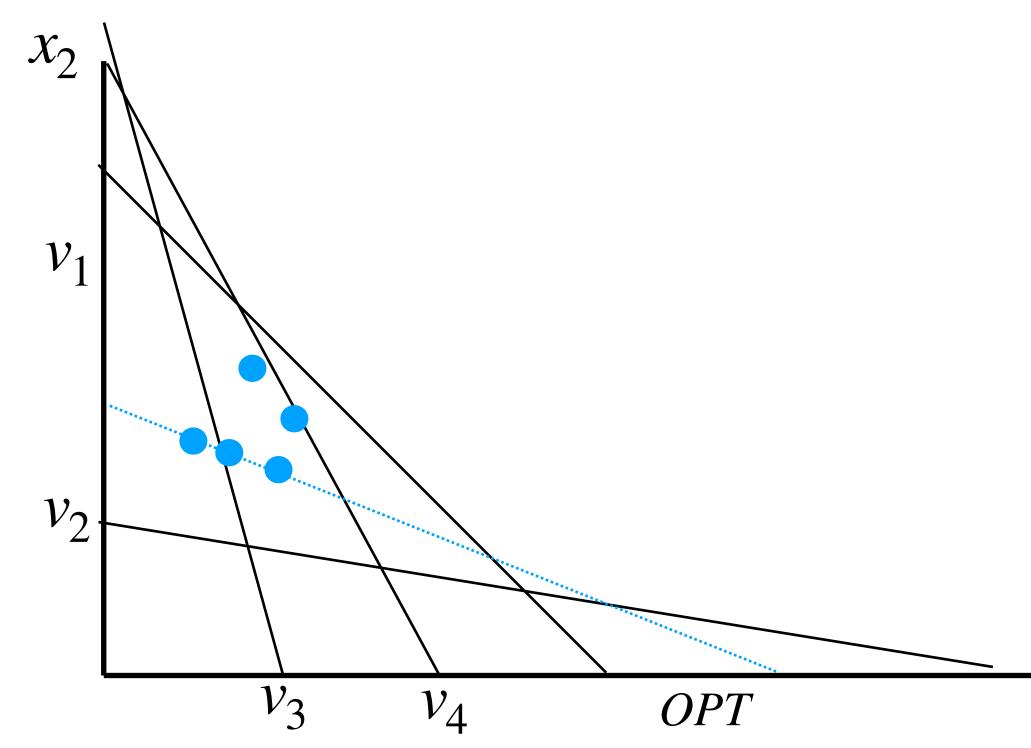
RO Covering IP:

min $c^T x$ $Ax \geq 1$ $x \in \{0, 1, 2, ...\}$ $c \geq 0$ $A \in [0,1]^{m \times n}$

<u>Theorem</u> (Gupta K. Levin): LearnOrCover has a competitive ratio of $O(\log mn)$ for RO CIP.

LearnOrCover: Two Informal Views x_2 **KL** Projection

- •One analysis of the primal-dual algorithm for adversarial order OSC casts it as iteratively performing a KL projection onto the feasible region.
- LoC does something similar, but renormalizes the weight of x^t .
- Is there a primal-dual interpretation of LoC?



LoC as Sample-Efficient Greedy

LoC (unit cost) (estimate k = |OPT|) initialize $x \leftarrow k/m$ L Sample from dist. Sample from good aver wrent good for *v* arriving uncovered (round *t*) (Cover) buy random $S \sim x$ (Learn) $\text{if } x_v \leq (e-1)^{-1}: \\ x_S \leftarrow e \cdot x_S \text{ for all } S \ni v \\ \checkmark$ $x \leftarrow k \frac{x}{\|x\|}$ (Backup) buy arbitrary $S \ni v$

Greedy (offline)

$$\mathcal{U}^0 \leftarrow [n]$$

while there are *v* uncovered

buy $S \in \mathcal{S}$ maximizing $S \cap \mathcal{U}^t$ $\mathcal{U}^{t+1} \leftarrow \mathcal{U}^t \backslash S$

learn which sitz pride good carenge zoing privad

Can the distribution *x* be seen as

maintaining a noisy estimate of which set provides the most marginal coverage?

Lower Bounds for ROSC

Two natural ways to relax random Order assumption:

Allow constraints to arrive in randomly-ordered batches:

Theorem (Gupta K. Levin): Batched RO set cover is $\Omega(\log b \log s)$ for b batches of size s

Relax the entropy of the distribution over arrival orders?

It quickly becomes easy to embed hard instance in the arrival sequence

...so what else is LearnOrCover good for?

The Landscape (again)

Instance

		Stochastic	
Arrival Order	B	 Θ(log mn) [Grandoni Gupta Leonardi Miettinen Sankowski Singh '08] constraints are i.i.d. samples from known D 	(S
	Adversarial	$\Theta(\log mn)$? constraints are independent samples from known \mathcal{D}_i (prophet setting)	Ю([Alc [Ko

Adversarial

 $\Theta(\log mn)$ nis talk]

Q: What makes online integer covering (online set cover) harder than offline?

secretary setting)

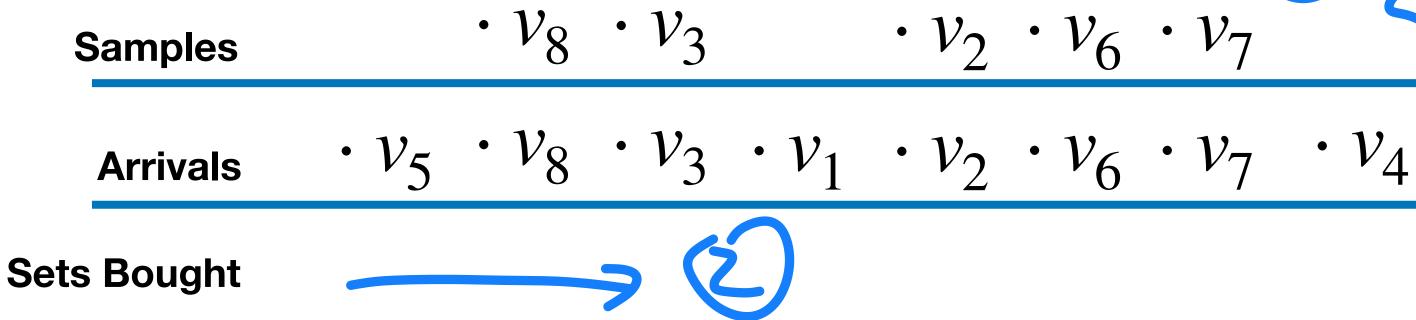
$(\log m \log n)$

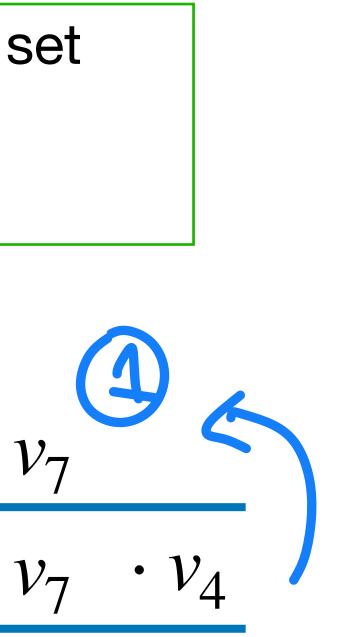
on Awerbuch Azar Buchbinder Naor '03] orman '04]

Online Set Cover With a Sample

Setting: online set cover/covering IPs, with the advantage that the algorithm observes a uniformly random fraction of the constraints at the outset.

Theorem: LearnOrCover can solve online set cover with an α sample with an expected competitive ratio of $O(1/\alpha \log mn)$.



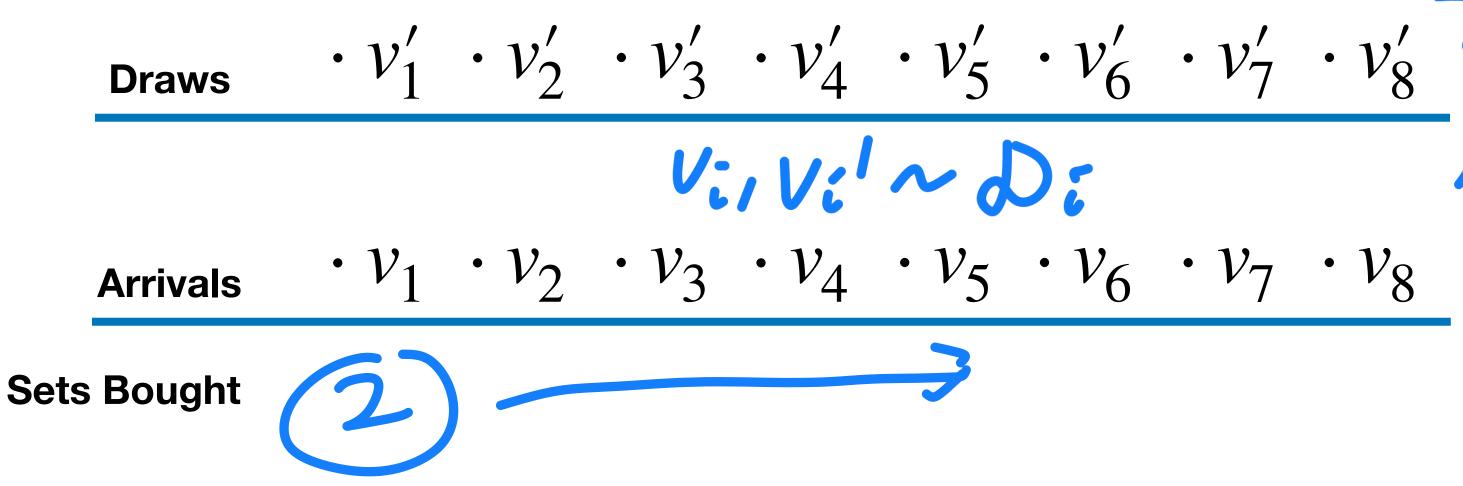


Idea: run LearnOrCover on the sampled constraints in a random order. The potential Φ permits the cost of the adversarial portion to be charged to the sampled portion, in expectation.

Prophet Online Set Cover

Setting: online set cover/covering IPs, where each arriving constraint v_i is an independent sample from some known distribution \mathcal{D}_i

<u>Theorem: LearnOrCover can solve prophet</u> online integer covering with an expected competitive ratio of $O(\log mn)$.



Idea: Sample constraints from the \mathcal{D}_i and run LearnOrCover on them. We can again make a coupling argument that charges the online constraints to the sampled ones, despite their arbitrary arrival order.

In conclusion

Instance

Stochastic

$\Theta(\log mn)$

[Grandoni Gupta Leonardi Miettinen Sankowski Singh '08]

constraints are i.i.d. samples from known \mathscr{D}

arial dvers: Ă

Arrival Order

R O H

$\Theta(\log mn)$

[in prep]

constraints are independent samples from known \mathcal{D}_i

(prophet setting)

Adversarial

 $\Theta(\log mn)$ [this talk]

(secretary setting)

$\Theta(\log m \log n)$

Q: What makes online linteger covering (online set cover) harder than offline?

A: Both having no foreknowledge of the instance, and facing it in adversarial order!

[Alon Awerbuch Azar Buchbinder Naor '03] [Korman '04]

Thank you!

Questions welcome now or later: gkehne@g.harvard.edu