
Online Integer Covering
in Random Order

Anupam Gupta Gregory Kehne Roie Levin

November 10, 2022 Duke University

Set Cover

 sets|𝒮 | = m elements,|𝒰 | = n

min cTx
Ax ≥ 1

x ∈ {0,1}

Set Cover:

c ≥ 0
A ∈ {0,1}m×n

⋅ v1
⋅ v3

⋅ v5

⋅ v7

⋅ v4

⋅ v2

⋅ v8

⋅ v6

Goal: find the smallest (cheapest) cover of all of
 using sets from 𝒰 = {v1, …, v8} 𝒮 = {S1, …, S6}

Online Set Cover Online Set Cover:

min cTx
Ax ≥ 1

x ∈ {0,1}

Goals:

• Satisfy each constraint upon arrival

• Maintain a solution which is

monotone increasing

• Compete with the best solution in

retrospect

Arrivals

Sets Bought

⋅ v1

⋅ v1

⋅ v2

⋅ v2

⋅ v3

⋅ v3

⋅ v4

⋅ v4

⋅ v5

⋅ v5

⋅ v6

⋅ v6

⋅ v7

⋅ v7

⋅ v8

⋅ v8

S4 S1 S5 S6 S1 S6

Online Set Cover in Random Order (RO)

Arrivals

Sets Bought

⋅ v1

⋅ v1

⋅ v2

⋅ v2

⋅ v3

⋅ v3

⋅ v4

⋅ v4

⋅ v5

⋅ v5

⋅ v6

⋅ v6

⋅ v7

⋅ v7

⋅ v8

⋅ v8

S4 S6

min cTx
aT

1 x ≥ 1
aT

2 x ≥ 1
⋮

aT
mx ≥ 1

x ∈ {0,1}

RO Set Cover:

Goal: Same as Online Set Cover, but
compete in expectation over the
randomness of the arrival orderS1

RO Covering Integer Programs (IPs)

Arrivals

Vars Bought

⋅ v1

⋅ v1

⋅ v2

⋅ v2

⋅ v3

⋅ v3

⋅ v4

⋅ v4

⋅ v5

⋅ v5

⋅ v6

⋅ v6

⋅ v7

⋅ v7

⋅ v8

⋅ v8

S4 S6 S1

min cTx
aT

1 x ≥ 1
aT

2 x ≥ 1
⋮

aT
mx ≥ 1

x ∈ {0,1,2,…}

RO Covering IP:

c ≥ 0
ai ∈ [0,1]m

S4 S2 S1 S2S1

Outline
Introduction

Prior Work

LearnOrCover (Warmup)

LearnOrCover in Polynomial Time

Some Intuition

Lower Bounds

More Adversaries Beaten!

Outline
Introduction

Prior Work

LearnOrCover (Warmup)

LearnOrCover in Polynomial Time

Some Intuition

Lower Bounds

More Adversaries Beaten!

The Landscape

Offline

Online Adversarial

Online RO

Online Stochastic

log n + 1
[Johnson ’74], [Lovasz ’75], [Chvatal ’79]

O(log m log n)
[Alon Awerbuch Azar Buchbinder Naor ’03]

Ω(log m log n)
[Korman ’04]

Θ(log mn)
[Grandoni Gupta Leonardi Miettinen Sankowski Singh ’08]

Θ(log mn)
[Gupta K. Levin ’21]

Theorem: (Gupta K. Levin):
There is a randomized
poly-time algorithm for RO
covering IPs with an
expected competitive ratio
of O(log mn)

The Landscape from a different view

Stochastic Adversarial

RO
Ad

ve
rs

ar
ia

l

Ar
riv

al
 O

rd
er

Instance

Θ(log m log n)
[Alon Awerbuch Azar Buchbinder Naor ’03]
[Korman ’04]

Θ(log mn)
[Grandoni Gupta Leonardi

Miettinen Sankowski Singh ’08]

constraints are i.i.d. samples
from known 𝒟

(prophet setting)

(secretary setting)

Θ(log mn)
[this talk]

What makes online
integer covering
(online set cover)

harder than offline?

constraints are independent
samples from known 𝒟i

 ?Θ(log mn)

Outline
Introduction

Prior Work

LearnOrCover (Warmup)

LearnOrCover in Polynomial Time

Some Intuition(?!)

Lower Bounds

More Adversaries Beaten!

Warmup: LearnOrCover (proof of concept)

 sets|𝒮 | = m
 elements|𝒰 | = n

min 1Tx
aT

1 x ≥ 1
aT

2 x ≥ 1
⋮

aT
n x ≥ 1

x ∈ {0,1}

Unit-Cost Set Cover:

ai ∈ {0,1}m

How can we get a (randomized)
-approximation to ROSC

online, supposing

• all sets have unit cost, and

• we are allowed exponential time?

O(log mn)

Warmup: LearnOrCover (proof of concept)

𝒰0 = 𝒰

𝒫0 = (𝒮
k)

𝒫t

 guess and set k = |OPT | 𝒫0

for arriving uncovered:v

choose T ∼ 𝒫t

buy S ∼ T

𝒫t+1 ← 𝒫t∖{T ∌ v}
(Learn)

(Cover)

buy arbitrary S ∋ v
(Backup)

Case 1: of cover of

 covers at least elements in expectation

 in expectation.

≥ 1/2 T ∈ 𝒫t ≥ 1/2 𝒰t

S
|𝒰t |
4k

|𝒰t+1 | ≤ (1 −
1
4k) |𝒰t |

Case 2: of cover of

at least of pruned in expectation

 in expectation.

> 1/2 T ∈ 𝒫t < 1/2 𝒰t

1/4 T ∈ 𝒫t

|𝒫t+1 | ≤
3
4

|𝒫t |

𝒰t

⋅ v1

⋅ v3

⋅ v5

⋅ v7

⋅ v4

⋅ v2

⋅ v8

⋅ v6

Warmup: LearnOrCover (proof of concept)

𝒰t 𝒫t

Potential:

every step decreases by in expectation, so steps suffice!

Φ(t) = k log |𝒰t | + log |𝒫t |
0 ≤ Φ(0) ≤ k log n + k log m

Φ(t) Ω(1) OPT ⋅ O(log mn)

Case 1: of cover of ≥ 1/2 T ∈ 𝒫t ≥ 1/2 𝒰t Case 2: of cover of > 1/2 T ∈ 𝒫t < 1/2 𝒰t

𝔼 |𝒫t+1 | ≤
3
4

|𝒫t |𝔼 |𝒰t+1 | ≤ (1 −
1
4k) |𝒰t |

, so Learn steps suffice|𝒫0 | ≤ mk O(k log m), so Cover steps suffice|𝒰0 | = n O(k log n)

In other words:

Once or we are done, so steps suffice! 𝔼 |𝒰t | = 1 𝔼 |𝒫t | = 1 OPT ⋅ O(log mn)

In expectation over the randomness of
the arrival order + the algorithm, its
solution will cost times the
cost of the optimal offline solution.

O(log mn)

Outline
Introduction

Prior Work

LearnOrCover (Warmup)

LearnOrCover in Polynomial Time

Some Intuition

Lower Bounds

More Adversaries Beaten!

LearnOrCover in Polynomial Time

Potential: Φ(t) = c1 ⋅ KL(x*∥xt) + c2 ⋅ k log |𝒰t |

(unit cost:)c = 1

 (estimate)k = |OPT |

for arriving uncovered (round)v t

buy random S ∼ x
(Learn)

(Cover)

buy arbitrary S ∋ v

initialize x ← k /m

if :xv ≤ (e − 1)−1

 for all xS ← e ⋅ xS S ∋ v

x ← k
x

∥x∥
(Backup) Case 2: 𝔼v[xv] ≤ 1/4

Case 1: 𝔼v[xv] > 1/4

Claim 1: and Φ(0) = O(k log mn) Φ(t) ≥ 0

Claim 2: whenever arrives uncovered𝔼[ΔΦ] ≤ − 1 v

expected change to is k log |𝒰t | −Ω(1)

expected change to is KL(x*∥xt) −Ω(1)

Claim 1 Claim 2 LearnOrCover has CR∧ ⇒ O(log mn) is coverage of by xv = ∑
S∋v

xS v x

KL(x*∥xt) = ∑
S

x*S log (
x*S
xt

S)

 and are nonincreasingKL(x*∥xt) k log |𝒰t |

LearnOrCover in Polynomial Time
 (estimate)k = |OPT |

for arriving uncovered (round)v t

buy random S ∼ x
(Learn)

(Cover)

buy arbitrary S ∋ v

(unit cost:)c = 1

initialize x ← k /m

if :xv ≤ (e − 1)−1

 is coverage of by xv = ∑
S∋v

xt−1
S v xt−1

 for all xS ← e ⋅ xS S ∋ v

x ← k
x

∥x∥
(Backup)

Lemma 1: if , then the expected
change to is .

𝔼v[xv] > 1/4
k log |𝒰t | −Ω(1)

Proof:
log |𝒰t | − log |𝒰t−1 | = log (1 −

|𝒰t−1 | − |𝒰t |
|𝒰t−1 |)

≤
−1

|𝒰t−1 | ∑
v∈𝒰t−1

𝕀{S ∋ v}

k𝔼S[Δ log |𝒰t |] ≤
−k

|𝒰t−1 | ∑
S

xt−1
S

k ∑
v∈𝒰t−1

𝕀{S ∋ v}

=
−1

|𝒰t−1 | ∑
v∈𝒰t−1

∑
S∋v

xt−1
S

= − 𝔼v[xv]

LearnOrCover in Polynomial Time
 (estimate)k = |OPT |

for arriving uncovered (round)v t

buy random S ∼ x
(Learn)

(Cover)

buy arbitrary S ∋ v

(unit cost:)c = 1

initialize x ← k /m

if :xv ≤ (e − 1)−1

 is coverage of by xv = ∑
S∋v

xt−1
S v xt−1

 for all xS ← e ⋅ xS S ∋ v

x ← k
x

∥x∥
(Backup)

Lemma 2: if , then the expected
change to is .

𝔼v[xv] ≤ 1/4
KL(x*∥xt) −Ω(1)

Proof:

∑
S

x*S log (
x*S
xt

S) − ∑
S

x*S log (
x*S

xt−1
S) = ∑

S

x*S log (xt−1
S

xt
S)

= ∑
S

x*S log (1
k ∑

T

xt−1
T ⋅ e𝕀{T∋v}) − ∑

S∋v

x*S log e

≤ k log (1
k ∑

S

xt−1
S +

1
k ∑

S∋v

(e − 1) ⋅ xt−1
S) − 1

= ∑
S

x*S log (xt−1
S

∑T xt−1
T ⋅ e𝕀{T∋v}

k ⋅ xt−1
S ⋅ e𝕀{S∋v})

≤ (e − 1) ⋅ xv − 1

 𝔼v[ΔKL] ≤ − Ω(1)

LearnOrCover in Polynomial Time
Potential: Φ(t) = c1 ⋅ KL(x*∥xt) + c2 ⋅ k log |𝒰t |

(unit cost:)c = 1

Claim 1: and Φ(0) = O(k log mn) Φ(t) ≥ 0

Theorem (Gupta K. Levin): LearnOrCover has a
competitive ratio of for unit-cost RO set cover.O(log mn)

 (estimate)k = |OPT |

for arriving uncovered (round)v t

buy random S ∼ x
(Learn)

(Cover)

buy arbitrary S ∋ v

initialize x ← k /m

if :xv ≤ (e − 1)−1

 for all xS ← e ⋅ xS S ∋ v

x ← k
x

∥x∥
(Backup)

 is coverage of by xv = ∑
S∋v

xS v x

Claim 2: whenever arrives uncovered𝔼[ΔΦ] ≤ − 1 v

expected change to is k log |𝒰t | −Ω(1)
or expected change to is KL(x*∥xt) −Ω(1)

 and are nonincreasingKL(x*∥xt) k log |𝒰t |

punchline: 0 ≤ 𝔼[Φ(t)] ≤ Φ(0) − Ω(t)

Potential: Φ(t) = c1 ⋅ KLw(x*∥xt) + c2 ⋅ k log |ρt /k |

Claim 1: and Φ(0) = O(k log mn) Φ(t) ≥ 0

LearnOrCover OSC with General Costs
 (estimate)k = c(OPT)

for arriving uncovered (round)v t

sample worth of cv S ∼ x
(Learn)

(Cover)

buy costing S ∋ v cv

initialize x ← k /(cS ⋅ m)

if :xv ≤ (e − 1)−1

xS ← xS ⋅ e 𝕀{S∋v} cv
cS

x ← k
x

∥x∥
(Backup)

cost of cheapest cv ← S ∋ v

Theorem (Gupta K. Levin): LearnOrCover has a
competitive ratio of for RO set cover.O(log mn)

Claim 2: whenever arrives uncovered𝔼[ΔΦ] ≤ − cv v

expected change to is k log |𝒰t | −Ω(cv)
or expected change to is KL(x*∥xt) −Ω(cv)

 and are nonincreasingKL(x*∥xt) k log |𝒰t |

spend per step, so nonincreasing.O(cv) 𝔼[c(LoC) + Φ]

KLw(x*∥xt) = ∑
S

cS ⋅ x*S log (
x*S
xt

S) ρt = ∑
v∈𝒰t

cv

LearnOrCover for RO Covering IPs
 (estimate)k = c(OPT)

for arriving uncovered (round)v t

sample worth of cv S ∼ x
(Learn)

(Cover)

buy costing S ∋ v cv

initialize x ← k /(cS ⋅ m)

if :xv ≤ (e − 1)−1

xS ← xS ⋅ e 𝕀{S∋v} cv
cS

avS

x ← k
x

∥x∥
(Backup)

cost of cheapest covercv ←

Theorem (Gupta K. Levin): LearnOrCover has a
competitive ratio of for RO CIP.O(log mn)

…very similar!

Major changes are:

• incorporating partial coverage:
measure according to
remaining uncoverage, sample
“sets” according to

•analysis of is
more involved (independent
sampling with partial coverage)

ρt

avS

𝔼[Δ log |𝒰 |]

min cTx
Ax ≥ 1

x ∈ {0,1,2,…}

c ≥ 0
A ∈ [0,1]m×n

RO Covering IP:

Outline
Introduction

Prior Work

LearnOrCover (Warmup)

LearnOrCover in Polynomial Time

Some Intuition

Lower Bounds

More Adversaries Beaten!

LearnOrCover: Two Informal Views
KL Projection

x1

x2

OPT

v2

v1

v3 v4

•One analysis of the primal-dual
algorithm for adversarial order
OSC casts it as iteratively
performing a KL projection onto
the feasible region.

•LoC does something similar, but
renormalizs the weight of .

•Is there a primal-dual
interpretation of LoC?

xt

LoC as Sample-Efficient Greedy

Can the distribution be seen as
maintaining a noisy estimate of which set
provides the most marginal coverage?

x

while there are uncoveredv
𝒰0 ← [n]

Greedy (offline)

buy maximizing S ∈ 𝒮 S ∩ 𝒰t

𝒰t+1 ← 𝒰t∖S

 (estimate)k = |OPT |

for arriving uncovered (round)v t

buy random S ∼ x
(Learn)

(Cover)

buy arbitrary S ∋ v

initialize x ← k /m

if :xv ≤ (e − 1)−1

 for all xS ← e ⋅ xS S ∋ v

x ← k
x

∥x∥
(Backup)

LoC (unit cost)

Outline
Introduction

Prior Work

LearnOrCover (Warmup)

LearnOrCover in Polynomial Time

Some Intuition

Lower Bounds

More Adversaries Beaten!

Theorem (Gupta K. Levin): Batched RO set cover is
 for batches of size Ω(log b log s) b s

Two natural ways to relax random Order assumption:

Relax the entropy of the distribution over arrival orders?

Allow constraints to arrive in randomly-ordered batches:

It quickly becomes easy to embed hard instance in the
arrival sequence

…so what else is LearnOrCover good for?

Lower Bounds for ROSC

The Landscape (again)

Stochastic Adversarial

RO
Ad

ve
rs

ar
ia

l

Ar
riv

al
 O

rd
er

Instance

Θ(log m log n)
[Alon Awerbuch Azar Buchbinder Naor ’03]
[Korman ’04]

Θ(log mn)
[Grandoni Gupta Leonardi

Miettinen Sankowski Singh ’08]

constraints are i.i.d. samples
from known 𝒟

(prophet setting)

(secretary setting)

Θ(log mn)
[this talk]

constraints are independent
samples from known 𝒟i

 ?Θ(log mn)

Q: What makes online
integer covering
(online set cover)
harder than offline?

Outline
Introduction

Prior Work

LearnOrCover (Warmup)

LearnOrCover in Polynomial Time

Some Intuition

Lower Bounds

More Adversaries Beaten!

Online Set Cover With a Sample
Setting: online set cover/covering IPs, with the

advantage that the algorithm observes a uniformly
random fraction of the constraints at the outset.

Arrivals

Sets Bought

⋅ v1 ⋅ v2⋅ v3 ⋅ v4⋅ v5 ⋅ v6 ⋅ v7⋅ v8

Samples ⋅ v8 ⋅ v3 ⋅ v2 ⋅ v6 ⋅ v7

Theorem: LearnOrCover can solve online set
cover with an sample with an expected
competitive ratio of .

α
O(1/α log mn)

Idea: run LearnOrCover on
the sampled constraints in a
random order. The potential

 permits the cost of the
adversarial portion to be
charged to the sampled
portion, in expectation.

Φ

Prophet Online Set Cover

Arrivals

Sets Bought

⋅ v1 ⋅ v2 ⋅ v3 ⋅ v4 ⋅ v5 ⋅ v6 ⋅ v7 ⋅ v8

Setting: online set cover/covering IPs, where each
arriving constraint is an independent sample from
some known distribution

vi
𝒟i

Theorem: LearnOrCover can solve prophet
online integer covering with an expected
competitive ratio of .O(log mn)

Idea: Sample constraints
from the and run
LearnOrCover on them. We
can again make a coupling
argument that charges the
online constraints to the
sampled ones, despite their
arbitrary arrival order.

𝒟i

Draws ⋅ v′ 1 ⋅ v′ 2 ⋅ v′ 3 ⋅ v′ 4 ⋅ v′ 5 ⋅ v′ 6 ⋅ v′ 7 ⋅ v′ 8

In conclusion

Q: What makes online
integer covering
(online set cover)
harder than offline?

Stochastic Adversarial

RO
Ad

ve
rs

ar
ia

l

Ar
riv

al
 O

rd
er

Instance

Θ(log m log n)
[Alon Awerbuch Azar Buchbinder Naor ’03]
[Korman ’04]

Θ(log mn)
[Grandoni Gupta Leonardi

Miettinen Sankowski Singh ’08]

constraints are i.i.d. samples
from known 𝒟 (secretary setting)

Θ(log mn)
[this talk]

(prophet setting)

constraints are independent
samples from known 𝒟i

Θ(log mn)
[in prep]

A: Both having no
foreknowledge of the
instance, and facing it
in adversarial order!

Thank you!

Questions welcome now or later: gkehne@g.harvard.edu

mailto:gkehne@g.harvard.edu

