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Abstract

In academic recruitment settings, including faculty hiring and PhD admissions,
committees aim to maximize the overall quality of recruited candidates, but there is
uncertainty about whether a candidate would accept an offer if given one. Previous
work has considered algorithms that make offers sequentially and are subject to a
hard budget constraint. We argue that these modeling choices may be inconsistent
with the practice of academic recruitment. Instead, we restrict ourselves to a single
batch of offers, and we treat the target number of positions as a soft constraint, so
we risk overshooting or undershooting the target. Specifically, our objective is to
select a subset of candidates that maximizes the overall expected value associated
with candidates who accept, minus an expected penalty for deviating from the target.
We first analyze the guarantees provided by natural greedy heuristics, showing
their desirable properties despite the simplicity. Depending on the structure of
the penalty function, we further develop algorithms that provide fully polynomial-
time approximation schemes and constant-factor approximations to this objective.
Empirical evaluation of our algorithms corroborates these theoretical results.

1 Introduction

Anyone who has served on a faculty hiring committee or a PhD admissions committee knows that a
successful outcome requires resolving the tension between two competing goals. On the one hand,
some candidates are (perceived to be) better qualified than others, and the aim is to recruit the best
candidates. On the other hand, there are a given number of positions to be filled, and while there is
typically some flexibility, there is a real cost to recruiting too many or too few people. The tension
arises in part because the stronger a candidate is, the more likely they are to receive multiple attractive
offers and the less likely they are to accept any particular offer. In order to manage uncertainty, a
good strategy may involve a mix of offers to stellar candidates and “safer” candidates.

To formalize this problem, we assume that a recruiting entity (academic or otherwise) has access to
two numbers for each candidate i: their value xi and their probability pi of accepting an offer. We
acknowledge that in current practice, these numbers are not always explicitly estimated. However,
committees typically rank or assign numerical scores to candidates based on their strength or fit, and
savvy committees roughly estimate recruitment chances by classifying candidates as, say, “high yield,”
“low yield” or “extremely low yield”, for example, by past experience or assistive computational
tools [12, 1]. Therefore, we believe that the gap between current practice and explicit value and
probability estimates is not large.

Our approach builds on the work of Purohit et al. [11], who cast hiring under uncertainty as a
stochastic optimization problem. In their basic model, there are n candidates (each associated with a
value and probability), k positions, and t time steps. In each time step, the algorithm (i.e. recruitment
strategy) may make an offer to a single candidate and receive a response; that is, at most t sequential
offers can be made, and the budget of k cannot be exceeded. The goal is to maximize the expected
value of candidates who accept offers. Purohit et al. also consider the setting where the algorithm may
make parallel offers in each round. For both problems, they develop polynomial-time, constant-factor
approximation algorithms (with approximations ratios of 2 and 8, respectively).
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This problem formulation captures key aspects of recruitment, but, in our view, it does have two
shortcomings. First, in a sense it is overcomplicated, as computational challenges stem from the
assumption that offers are made sequentially: even with parallel offers, if there is a single time step
(t = 1) then it is optimal to make offers to the k candidates with largest pi · xi. But, in our experience
of faculty hiring and PhD admissions in several universities, offers are typically made in one batch.
Indeed, delayed offers (in the case of faculty hiring) and waitlists (in the case of PhD admissions) are
usually avoided as they negatively impact yield.

The second, and more crucial, shortcoming is that Purohit et al. [11] consider the constraint of hiring
k candidates as firm. Again, this is inconsistent with our experience: Offers are made so that the
expected yield roughly matches a desired target, but some faculty hiring or PhD admission cycles are
“too successful,” in the sense that the number of candidates who accept their offers is much larger
than expected. This has a real cost: in the case of PhD students, it creates difficulties in finding
funding and advisors, and in the case of faculty hiring, it may precipitate a shortage of resources with
long-term impacts on future hiring and even tenure. For example, in one of our institutions, a faculty
hiring cycle with yield that was much higher than expected led to the cancellation of the subsequent
year’s search.

Let us, therefore, reformulate the problem of hiring under uncertainty in a way that avoids both
issues. We assume that offers are made in a single batch, and the target number of positions k is a
soft constraint. Specifically, a penalty is incurred for deviating from the target number of positions;
we consider several different options for this penalty function. The optimization problem is this:

Select a subset S of candidates that maximizes overall expected reward
∑
i∈S pi ·xi,

minus expected penalty for deviating from the target number of positions.

Enumerating all possible subsets S may be practicable for small instances, for example in the case of
faculty hiring in small departments. However, a brute-force approach will not work for this purpose
in larger departments, or at the scale of PhD admissions even in smaller programs, which motivates
our search for good algorithms.

Our results. We first consider a simplified case where the goal is to solely minimize the penalty
term of our objective (irrespective of the rewards), and show that the greedy algorithm that selects
candidates in decreasing order of their probabilities is optimal (Section 3.1).

The full objective is considerably more complex, and we analyze it under two natural penalty
functions. When the penalty function is the mean squared error from the target, we show that
the optimization problem is weakly NP-hard, and provide a fully polynomial-time approximation
scheme (FPTAS). When the penalty is linear in the extent to which the target is exceeded (that is,
a linear penalty is incurred by overshooting, but not by undershooting), we show that two greedy
heuristics — picking in the decreasing order of the value xi and the expected value pixi — provide
approximations to the optimal solution that are polynomial in the minimum probability pmin. We then
present a constant-factor approximation algorithm that runs in polynomial time for fixed pmin and
candidate value relative to overshooting penalty, thereby improving upon the greedy heuristics.

Finally, we carry out experiments on synthetically generated data (Section 4), focusing on L+
1 loss.

We observe that the two greedy heuristics perform reasonably well, especially if the values and
probabilities are positively correlated. At the same time, compared to the greedy heuristics, our
constant-factor approximation algorithm better adapts to specific instances, especially when this
correlation is negative. These numerical experiments corroborate our theoretical results that the
greedy heuristics provide reasonable guarantees, justifying their use in practice for both simplicity
and good performance. However in many regimes the additional flexibility of the constant-factor
approximation algorithm is likely worth its complexity overhead.

Related work. In practice, the challenge of uncertainty in admissions is mitigated by practices
such as admitting students in multiple rounds, using a waitlist, and using a rolling process [9]. There
are also assistive computational tools that predict student yield rate with machine learning [12, 1]. As
previously mentioned, there are a few theoretical formulations that model and address the uncertainty
in such problems. Purohit et al. [11] consider an online setting where in each timestep if a candidate
is given an offer then their decision is revealed immediately, and analyzes the optimal ordering to
give the candidates offers to subject to a hard constraint on the total number of acceptances. Ganguly
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et al. [7] consider a setting with multiple rounds where the yield rate in each round is either qL or qH
(with qL < qH ). To model the negative correlation between the candidate quality and the probability
of acceptance, they assume that the probability of the yield rate being qH is linear in the number of
students admitted. They subsequently derive a decision tree that computes the number of admissions
to make in each round. For single batch selection, Zhang and Pippins [13] analyze the optimal number
of applicants to admit using techniques from yield management, under the assumption that each
applicant has identical value and probability. A distinct line of work casts the admissions problem
as a decentralized matching market [4, 5], where the uncertainty in acceptance is modeled by the
students’ stochastic preferences over multiple schools. An objective combining the utility and the
accepted size is considered, but the penalty is on the expected size, not counting the variance involved
as opposed to ours.

Our proposed formulation is closely related to the knapsack problem and its myriad variants. In the
stochastic knapsack problem, each item has a deterministic value and an independent stochastic size;
the actual size of an item is revealed only after it is selected [8, 6, 2]. For the one-shot version of this
problem, the aim is to choose a subset maximizing the expected value of the realized items, such that
the probability that these realizations violate the knapsack constraint is below some threshold. In
contrast, our “items” have equal size, but we pay a penalty which is some function of our realized
distance from our knapsack target size, exchanging the constraint for a mixed-sign objective. In this
spirit, the one-sided loss functions we consider are similar to objectives which arise in the penalty
method for solving constrained optimization problems [10], though our setting is stochastic and we
do not introduce the penalty term in service of ultimately satisfying a hard constraint.

2 Problem Formulation

Taking a knapsack perspective, consider some n items (corresponding to candidates) with associated
values x1, . . . , xn ∈ R. If we select an item i ∈ [n], there is a probability pi ∈ [0, 1] that we receive
this item (the candidate accepts the offer). We write these values and probabilities as vectors x ∈ Rn
and pi ∈ [0, 1]n. Let Zi ∈ {0, 1} be the indicator that we receive item i if it is selected, so that
Zi ∼ Ber(pi). We assume the events that we receive each individual item are independent. Let
SZ ⊆ S denote the random realization of chosen items; that is, SZ := {i ∈ S : Zi = 1}. Our goal is
to select a subset S ⊆ [n]. First, we consider the reward for a subset S as the expected total value
obtained:

R(S) := E
[∑
i∈S

Zixi

]
=
∑
i∈S

pixi.

At the same time, let M ∈ N+ denote a target size that we want SZ to achieve. We want to control
the expected deviation of the realized size of SZ , which is |SZ | =

∑
i∈S Zi, from the target size M .

We consider this penalty as

V (S) := E [ρ (|SZ |, M)] ,

where ρ : N×N+ → R≥0 is a loss function, to be specified later. Combining the two parts, we define
the overall objective as

U(S) := R(S)− λ · V (S), (1)

where λ ∈ R+ is a hyperparameter that governs the importance of the penalty relative to the reward.
Our goal is to find the subset that maximizes the overall expected utility:

S∗ ∈ arg max
S⊆[n]

U(S).

We denote a problem instance by I := (x, p,M, λ), and the solution S∗ is thus a function of the
problem instance and the loss function ρ. It is worth noting that since the overall utility U is a
mixed-sign objective, the optimal value of U(S∗) may be negative depending on the instance and
choice of ρ.

We consider a range of choices for the loss function ρ. Given a target size M , it is natural for ρ to
be a convex function minimized at M , which penalizes any deviation from M , or alternatively a
monotone convex function that is nonzero above M , which can be seen as penalizing violation of the
budget constraint. We focus in particular on one- and two-sided linear and quadratic losses, which
are formally introduced in Section 3.2 below.
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3 Theoretical Results

To begin we note that if we only consider the reward term and set the penalty term to be V (S) := 0,
then the solution is to trivially select all items. In what follows, we first discuss the other extremal
case, taking R(S) := 0 and considering the penalty V in isolation. These may be viewed as the
extreme cases when λ = 0 and λ→∞. We will then turn to the general objective and consider both
terms jointly.

3.1 Warm-Up: Penalty Only

To gain intuition for this problem, we start with the simplified case in which our goal is only to
minimize the penalty term. Note that in this case our objective is strictly nonpositive.

Algorithm 1 PGREEDY

Require: p ∈ [0, 1]n

1: S ← ∅.
2: Sort i ∈ [n] in decreasing order and re-index the items such that p1 ≥ . . . ≥ pn
3: for i = 1, 2, . . . , n do
4: if U(S ∪ {i}) ≥ U(S) then
5: S ← S ∪ {i}
6: else
7: break
8: return S

We consider PGREEDY, the greedy algorithm with respect to pi (Algorithm 1). In words, PGREEDY
selects items in their decreasing order of probabilities, with ties broken arbitrarily if there are multiple
items with the same probability.1 The algorithm keeps selecting the next item defined by this order,
and terminates when adding the next item would decrease the objective. As usual this greedy
algorithm is computationally efficient, since the stopping criterion can be checked in polynomial time
given access to ρ. (See Lemma 5 in Appendix B.8 for details.) Surprisingly, PGREEDY is optimal for
minimizing V (S) in isolation.

Proposition 1. LetM ∈ N+ be any target size. If the loss function ρ( · ,M) is convex, then PGREEDY
(Algorithm 1) yields an optimal solution to minimizing the penalty minS⊆[n] V (S).

The proof of this proposition is provided in Appendix B.3. This result is not obvious, as one might
expect that as the sum of probabilities of all selected items so far approaches the target size, it may
be better to select an item with lower probability than an item with higher probability to “fill the
gap.” This is not true. Intuitively, it is because the realization of each Zi is binary, so the outcome of
adding another item i into the selection is either we add this item (with probability pi) or not (with
probability 1− pi). If adding this item gives lower penalty, then we desire to add the item with the
largest probability possible.

3.2 The General Objective

We now turn to the general objective. At the outset it bears noting that U(S) is submodular in S
whenever ρ(·,M) is convex (see Lemma 1 in Appendix B.1), as is the case for the loss functions we
consider. Unfortunately the existing body of work on (non-monotone) submodular maximization
cannot be leveraged to obtain a general-purpose approximation to U(S), since U is mixed-sign
and may be negative even at optimality, and applying an affine transformation in order to engineer
nonnegativity will generally destroy any approximation guarantees.

We focus on a few natural choices of the loss function. First, we consider ρ given by linear and
quadratic losses, which we denote by L1 and L2 respectively. These yield penalty terms V (S) which
are equal to the mean average error (MAE) and mean squared error (MSE) for the realized size of the

1In practice it is natural to break ties in favor of items of higher value, though this does not affect our results.
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subset SZ . We also consider the corresponding one-sided losses, defined by

L+
1 (|SZ |,M) :=

{|SZ | −M if |SZ | ≥M
0 otherwise,

and L+
2 (|SZ |,M) := L+

1 (|SZ |,M)2.

All of these losses considered penalize the case where the realized size is greater than the target
size M . In applications such as admissions and hiring, there is a limited, pre-specified amount of
resources allocated to the newly admitted or hired people. Hence, having more people than the target
size is not desired. At the same time, the two-side losses give explicit preference that the realized
size should also not be smaller than the target size. This explicit penalty for undershooting could
represent a hit to morale (an unsuccessful recruitment cycle really is demoralizing) or insufficient
staffing for required tasks, such as teaching certain courses. The one-side loss functions may to some
extent capture these considerations, as there is an implicit opportunity cost described by the reward
term when fewer candidates accept.

3.2.1 An FPTAS for L2 Loss

Given that we understand our problem in both extremal cases (when only considering the reward term
or the penalty term), one might hope that some interpolation between them could solve the general
case. However the general case is more complicated. Recall that for the penalty-only objective,
PGREEDY in Algorithm 1 attains the optimal selection, by adding items in decreasing order of pi,
and terminates once the next item strictly decreases the objective. But PGREEDY is clearly ill-suited
to the general objective, since it does not take values into consideration. We now present two more
natural greedy heuristics analogous to PGREEDY, and show that they are provably not optimal for the
general objective. Specifically, we consider:

• XGREEDY: adds items in decreasing order of their value xi, and terminates once the next
item in this order strictly decreases the objective.

• XPGREEDY: adds items in decreasing order of their expected reward xipi, and terminates
once the next item in this order strictly decreases the objective.

Despite these heuristics appearing intuitive, they perform in a certain sense arbitrarily poorly even for
the squared L2 loss, as formalized by the following result.

Proposition 2. Consider the two-sided loss ρ = L2 and any λ > 0. Then for PGREEDY, XGREEDY
and XPGREEDY, there exists an instance such that the algorithm selects S ⊆ [n] for which U(S) ≤ 0,
while U(S∗) > 0.

The proof of this proposition is provided in Appendix B.4, and we now provide an informal description
of the instances constructed. Since PGREEDY does not take into account the item values xi at all, it is
natural to expect that PGREEDY is not suitable for the general objective. Specifically, we consider
two items where one item has probability 1 and value 0, and the other item has a “good” probability
less than 1 and a “good” value. Then PGREEDY selects the first item, whereas selecting the second
item only yields a positive objective value. For XGREEDY and XPGREEDY, we consider two items
that have almost the same expected reward. We let item 1 has a probability of 1. We let item 2 have a
slightly greater expected reward for tie-breaking, and let item 2 have a smaller probability. In this
case, XGREEDY and XPGREEDY start by picking item 2, which introduces nontrivial variance. When
λ becomes large, this variance drives the overall objective negative. On the other hand, picking item
1 yields a strictly positive objective.

Despite the failure of heuristic approaches, when the chosen loss function is ρ = L2 our problem can
in fact be approximated up to negligible additive error. For this loss, our full objective (1) may be
written as

U(S) =
∑
i∈S

pixi − λ · E
(∑
i∈S

Zi −M
)2

. (2)

Letting bi ∈ {0, 1} be the binary decision variable for whether i ∈ S, that is, bi := 1{i ∈ S}, the
optimization problem then becomes

arg max
S∈[n]

U(S) = arg max
b∈{0,1}n

∑
i∈[n]

bipixi − λ · E

∑
i∈[n]

biZi −M

2

. (3)
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Expanding (3) yields a collection of terms which are constant, linear, and quadratic in the bi, and so
the objective can be reformulated as an unconstrained binary quadratic program (UBQP). Although
UBQP is strongly NP-hard, Çela et al. [3] present a pseudo-polynomial time algorithm for UBQP
when the coefficient matrix for the quadratic form in the objective has constant rank. By proving that
the objective (2) is sufficiently insensitive to small changes in our problem parameters, we leverage
this pseudo-polynomial time algorithm to derive a FPTAS for approximating the optimal objective
value for our problem. A standard search-to-decision reduction then yields the following result.

Theorem 1. For ρ = L2, Algorithm 4 identifies some S ⊆ [n] satisfying U(S) ≥ U(S∗)− ε in time
poly(1/ε, n,M, λ).

Pseudocode describing Algorithm 4 and the proof of this theorem are provided in Appendix B.5. On
the other hand, by a reduction from equipartition we have the following hardness:

Theorem 2. For ρ = L2, optimizing U(S) is weakly NP-hard.

The proof of this theorem is provided in Appendix B.6. The hardness landscape of our problem when
ρ = L2 is therefore similar to that of the knapsack problem, which is heartening since the knapsack
problem is relatively tractable in practice. However unlike the knapsack problem, we should only
hope for additive rather than multiplicative guarantees; this is because for ρ = L2 our optimal value
is not bounded away from zero and may be strictly negative, even if all values xi are nonnegative.

In contrast to L2, we find that the one-sided loss L+
2 is not straightforward to analyze. In this case the

objective does not admit a quadratic factorization in terms of decision variables, and although the
objective is nonnegative, it is difficult to analyze the performance of the greedy algorithm or contend
with the nonlinearity of the loss function in a principled way. We instead turn to L+

1 loss, where
surprisingly these obstacles can be overcome.

3.2.2 Approximations for L+
1 Loss

The loss ρ = L+
1 enables the possibility of a multiplicative approximation because the optimum value

U(S∗) of the mixed-sign objective is nonnegative. More generally, any ρ with ρ(0,M) = 0 has a
nonnegative optimal value, since in this case U(∅) = 0. For ρ = L+

1 choosing any single item i with
positive xi and pi has strictly positive objective, since M ≥ 1 implies that L+

1 (1,M) = 0 and so
U({i}) = pixi. More generally, for this loss it suffices to consider only i for which xi > 0, since
under this loss the marginal contribution of any i with xi ≤ 0 is nonpositive.

The L+
1 loss may appear amenable to a greedy algorithmic approach, since early items incur no

penalty and the marginal penalty of adding a later item i is simply proportional to the probability
that the current solution exceeds the target M . However, as in the case for the L2 loss, these natural
heuristics fail to consider the relation between items in the selection. While efficient, these greedy
algorithms perform arbitrarily badly compared to the optimal solution in the worst case. The failure
of PGREEDY is again apparent as in the case for the L2 loss. We now provide some informal “bad”
instances for XGREEDY and XPGREEDY for intuition.

Recall that XGREEDY chooses items in order by value. Consider M = 1, and consider two types of
items with (x1, p1) = (1, p) and (x2, p2) = (0.5, 1). XGREEDY picks item 1 and yields an objective
of O(p), whereas picking item 2 yields a constant objective. The other greedy algorithm XPGREEDY
chooses items i in the order of their expected value xipi. We consider the instance with M = 1,
and two types of items (x1, p1) = (1 + ε, 1) and (x2, p2) = (1/p, p) with some tiny ε > 0 so that
XPGREEDY chooses an item from type 1 and yields a constant objective. On the other hand, choosing
1
p copies of item 2 yields an objective of Ω(1/p).

For both XGREEDY and XPGREEDY, the constructed instances yield an upper bound on the approxi-
mation ratio, scaling as p, where p is the smallest probability associated with the items. It suggests
that the minimum probability pmin := mini∈[n] xi is a natural parameter for measuring the complexity
of an instance with respect to the L+

1 loss. Another natural parameter is xmax := maxi∈[n] xi, the
maximum value among all items. Surprisingly, the performance of these greedy algorithms can be
lower-bounded in terms of pmin as well, under an additional assumption about the values of items
relative to λ.

Theorem 3. Consider the one-sided loss ρ = L+
1 . If there is some fixed constant c > 0 such that

xmax ≤ (1− c) · λ, then
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(a) There exist instances for which PGREEDY selects S with U(S) = 0, while U(S∗) > 0.

(b) The worst-case approximation ratio for XPGREEDY is Θ(pmin).

(c) The worst-case approximation ratio for XGREEDY is Ω(p2min) and O(pmin).

The proof of this theorem is provided in Appendix B.7. As a consequence, the approximation ratios
of these greedy algorithms can be arbitrarily small as pmin → 0. Also note that these upper bounds do
not require the assumption that xi ≤ (1− c)λ; in all three cases there exist bad instances irrespective
of this assumption. The reason we can derive better lower bounds for XPGREEDY than XGREEDY is
intuitive; this is because XPGREEDY measures the expected reward conferred by an item, and so can
be more directly related to the optimal solution S∗.

This is in notable contrast to when ρ = L2, where we saw that multiplicative guarantees are inapt and
all three greedy algorithms may incur arbitrarily large additive loss. Theorem 3 also raises a natural
question: is this 1/pmin threshold tight, or is it possible to efficiently attain better approximations
to U(S∗) which do not depend on pmin? We address this by introducing ONESIDEDL+

1 , presented
in Algorithm 2, which attains a constant-factor approximation to the optimal solution. In this
pseudocode, for any vector v ∈ Rn and set S ⊆ [n], we use v|S to denote the |S|-dimensional
vector obtained by restricting v to its coordinates indexed by S. Its runtime is parameterized by the
minimum probability pmin and the ratio of the maximum value xmax to the penalty parameter λ; in
particular for fixed pmin and λ/xmax it is polynomial in n.

At a high level, ONESIDEDL+
1 proceeds first by dividing the items into three groups according to their

values xi, and considering each group in turn. Since U is submodular (Lemma 1), the optimal solution
within at least one of these groups is constant-competitive with U(S∗). We obtain a constant-factor
approximation for each group in a different way.

For the items with low values bounded away from λ, LOWVALUEL+
1 (Algorithm 5 in Appendix B.8)

checks all small subsets, which succeeds if the optimal subset for this group is small. It also computes
rounded probabilities and values (qi, yi) for each item in this group, and then efficiently computes the
optimal solution according to this rounded instance. If the optimal subset is large, we then prove that
this search over rounded solutions necessarily identifies a subset with objective value comparable to
that of the optimal subset. This is the technical crux of proving that ONESIDEDL1 is a constant-factor
approximation.

For the items with values just below λ, MEDIUMVALUEL+
1 (Algorithm 6 in Appendix B.8) returns

the optimal subset if the group is small. If the group is large, it tries to choose a subset such that
the expected number of realizations is about M ; if there are not enough it chooses a subset with
approximately half the expected realizations of the group overall. Finally for the group of items with
values above λ, it is easy to see that choosing the entire group is optimal. The pseudocode and related
proofs for these algorithms appear in Appendix B.8. The following result provides a theoretical
guarantee for Algorithm 2.

Algorithm 2 ONESIDEDL+
1

Require: Problem instance I = (x, p,M, λ)
Ensure: S ⊆ [n] for which U(S) ≥ c · U(S∗) for universal constant c

1: NL ← {i ∈ [n] : xi ≤ (1− pmin
4 ) · λ}

2: NM ← {i ∈ [n] : (1− pmin
4 ) · λ < xi < λ}

3: NH ← {i ∈ [n] : xi ≥ λ}
4: SL ← LOWVALUEL+

1 (x|NL , p|NL , λ,M)
5: SM ← MEDIUMVALUEL+

1 (x|NM , p|NM , λ,M)
6: SH ← NH
7: Compute U(SL), U(SM ), and U(SH)
8: return S ∈ {SL, SM , SH} maximizing U(S)

Theorem 4 (Constant-factor approximation for L+
1 ). Algorithm 2 is a constant-factor approximation

to U(S∗) which runs in time n
O

(
1

p2min
max

{
1,log

(
1
pmin

)
,log( λ

xmax )
})

.
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The proof of this theorem is provided in Appendix B.8. Intuitively, the reason Algorithm 2 divides
the items into cases depending on their values is to handle the case when the reward portion of U(S∗)
is almost equal to the penalty portion. This presents an impediment to the efficient strategy of solving
a rounded version of the instance, since in this case the magnitude and even the sign of U(S∗) is
potentially quite sensitive to changes in the pi and xi. By restricting attention to the low-value case,
we prove that the expected number of realized items in S∗ is not much more than the threshold
M . This then allows us to argue that there exist good rounded solutions, which we may efficiently
identify.

We conclude our theoretical results with a surprising equivalence between one- and two-sided linear
losses L+

1 and L1. In what follows, we use UL1
and UL+

1
to denote the objective with ρ = L1 and

ρ = L+
1 , respectively. We use U(S; I) to denote the evaluation of U(S) specifically with respect to

the instance I = (x, p, λ,M).

Theorem 5 (Equivalence between L1 and L+
1 ). For any instance I = (x, p, λ,M) and for all

S ⊆ [n], consider I ′ = (x′, p, λ′,M) given by x′i := xi − λ and λ′ := 2λ. Then

UL1
(S; I) = UL+

1
(S; I ′)− λ ·M.

The proof of this theorem is provided in Appendix B.9. In particular, since λ and M do not depend
on S, this implies that S maximizes UL1

on I if and only if it maximizes UL+
1

on I ′.
Although Theorem 5 establishes a correspondence between the solutions to our problem for ρ = L1

and ρ = L+
1 , it is not approximation preserving and so does not convert ONESIDEDL1 into an

approximation algorithm for the two-sided setting. Indeed, as in the ρ = L2 setting, the optimal value
when ρ = L1 can be strictly negative.

4 Numerical Experiments

Having established worst-case theoretical guarantees, we wish to test how well our algorithms perform
empirically. We focus on L+

1 loss because our result for L2 is an FPTAS, so we know its performance
can be made to be arbitrarily close to optimal. Specifically, the experiments benchmark the subroutine
LOWVALUEL+

1 (part of ONESIDEDL+
1 ) against XGREEDY and XPGREEDY for the regime where

xi ≤ (1− c)λ. This is the regime which LOWVALUEL+
1 was developed to handle for ONESIDEDL+

1 ,
and it is the regime for which we prove performance guarantees for XPGREEDY and XGREEDY.
All error bars shown in the plots represent standard error of the mean. The code to reproduce our
simulationresults is available at https://github.com/jingyanw/recruitment_uncertainty.

4.1 Experimental Setting

In constructing instances we follow the approach of Purohit et al. [11] in their use of beta distributions
to orchestrate different kinds of correlation between xi and pi. We therefore first draw xi ∼ Unif[0, 1],
and then produce three types of correlation as follows:

• Negative correlation: pi ∼ pmin + (1− pmin) · Beta(10(1− xi), 10xi).
• Positive correlation: pi ∼ pmin + (1− pmin) · Beta(10xi, 10(1− xi)).
• No correlation: pi ∼ Unif[pmin, 1].

This construction differs from the sampling paradigm of Purohit et al. [11] only in that we re-
normalize the probabilities {pi} so that they are bounded in [pmin, 1]. We consider n = 50 and
pmin = 0.01 throughout, and explore the greedy heuristics XGREEDY and XPGREEDY, as well as
the constant-factor approximation algorithm ONESIDEDL+

1 (Algorithm 2), for a range of M and λ.
This lower bound on pmin ensures that the performance of the greedy heuristics and runtime of our
algorithm are reasonable; a value of 0.01 (say) is realistic because in practice, if a candidate takes the
time and effort to apply, it is reasonable to assume that they at least have some nontrivial probability
to accept if they were given an offer. We also focus on the regime where xi < λ, which is assumed
by Theorem 3 and handled in Algorithm 2 by the subroutine LOWVALUEL+

1 . We believe that this is
the main regime of practical interest: candidates with xi ≥ λ are beneficial regardless of how many
candidates have already accepted offers, and one might suppose that such candidates are rare.
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Figure 1: Sampling from the beta distribution with positive, no, and negative correlation. Here
n = 50 and λ = 3.

1 2 3 4 5

target

0.5

1.0

1.5

2.0

2.5

O
b

je
ct

iv
e

lambda=1.5

LowValueL1+

xGreedy

xpGreedy

1 2 3 4 5

target

0.5

1.0

1.5

2.0

O
b

je
ct

iv
e

lambda=5

LowValueL1+

xGreedy

xpGreedy

1 2 3 4 5

target

0.0

0.5

1.0

1.5

2.0

O
b

je
ct

iv
e

lambda=30

LowValueL1+

xGreedy

xpGreedy

Figure 2: Performance for increasing penalty regularizer λ. Here n = 50 and sampling is via the
negatively correlating beta distribution.

Note that our theoretical guarantees (Theorem 4) necessitate that all candidate solutions up to size
τ = Õ(1/p2min) are checked by brute force. In this implementation of LOWVALUEL+

1 we take
τ = 0 and isolate its search over rounded solutions. As we consider small target sizes M , this
prevents LOWVALUEL+

1 from outperforming the greedy algorithms simply by virtue of having brute
forced over all relevant solutions. This only hinders the performance of LOWVALUEL+

1 . In fact,
LOWVALUEL+

1 only considers rounded solutions S satisfying
∑
i∈S xipi ≤ 2M . So long as xi < λ,

such a stopping condition can be deployed without loss of generality. For details, see Appendix B.8.
We believe this offers a favorable tradeoff between runtime and accuracy, and illustrates a lower
bound on the performance of LOWVALUEL+

1 as written.

4.2 Experimental Results

The objective values that our algorithms of interest attain for these distributions are shown in Figure 1.
Note that positive correlation leads XGREEDY and XPGREEDY to pursue very similar (and optimal)
strategies, as expected. This is intuitively the easier setting, and here LOWVALUEL+

1 performs on par
with the greedy heuristics. In the no-correlation and negative-correlation settings, there are regimes
where one of the two greedy heuristics performs better than the other one, whereas LOWVALUEL+

1
appears to perform as well as the better of two depending on the regimes, showing its better adaptivity
across these instances in practice as well as in theory.

Negative correlation between xi and pi is of particular interest to us, since it seems most relevant for
the setting of faculty hiring and PhD admissions, and in fact hiring and recruitment more broadly. In
Figure 1, we also observe that negative correlation is the setting that displays the most heterogeneity
in algorithm behavior. We therefore turn to this negative-correlation setting and explore the effect of
increasing the penalty regularizer λ in Figure 2. In general, LOWVALUEL+

1 appears comparable to
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the better of the two greedy approaches across the values of M and λ that we examine, though there
is a small gap between the objectives achieved by LOWVALUEL+

1 and XGREEDY when λ = 1.5.

This is also good news for XGREEDY and XPGREEDY, because it suggests that the two of them
together remain competitive across a wide range of instances. To the extent that LOWVALUEL+

1
falls short of U(S), it is due to systematically rounding the probabilities pi up by a constant factor
when computing the prospective utility of solutions. Because its rounding preserves the reward
term, such a systematic overestimate in the pi leads it to overestimate the penalty term of any set
under consideration. The presence of a large number of (xi, pi) with individually balanced but
collectively large impact on the objective could therefore explain the extent to which LOWVALUEL+

1
lags behind XGREEDY in Figure 2; the latter chooses many such individuals while the former judges
their influence on the penalty to be too large. However, this can be mitigated by choosing smaller
multiplicative bucket sizes for LOWVALUEL+

1 , which is particularly effective in the case where the
{pi} of an instance fall in a small number of clusters or exhibit other structure.

5 Discussion

One of the takeaways from our theoretical and empirical results is that the greedy algorithm XGREEDY,
which makes offers to a subset of candidates with the highest values, is practicable for L+

1 loss. This
is intriguing because the algorithm is quite similar to how faculty hiring and admissions committees
typically think: they want to make offers to the best candidates. The difference is that XGREEDY
carefully selects the number of offers to be made, in a way that (greedily) maximizes the objective.
Since XGREEDY amounts to a relatively small tweak to current practice, we believe committees
would find the algorithm to be especially palatable.

An issue our results do not address is which penalty function best matches the needs of a specific
recruitment process. For example, is there a rigorous way to argue that a particular choice of penalty
function is more broadly applicable than another? That said, the choice between one-sided and two-
sided penalty is rather intuitive, depending on the application. And our results provide computational
arguments in favor of L2 when two-sided penalty is desired, and L+

1 for one-sided penalty.

From an ethical viewpoint, a potential concern is that our proposal may ultimately have unintended
negative consequences. For example, if many faculty hiring committees adopted our optimization-
based approach, might candidates have fewer opportunities? We believe, however, that the opposite
is true. Currently the academic job market is strikingly inefficient, as committees often converge on a
few candidates who are inundated with interviews and offers, while comparably strong candidates
are left with nothing. If our approach is adopted widely, it is likely to widen the pool of candidates
who receive appealing offers. Granted, a centralized matching market (in the style of the National
Resident Matching Program) may be an even better solution, but creating such a market requires a
huge — and often impractical — degree of coordination; by contrast, our approach can be adopted
independently by institutions and even by individual departments or committees.
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A Additional Experiments

In this section, we present additional experiments which shed more light on the performance of
XGREEDY, XPGREEDY, and ONESIDEDL+

1 relative to one another and to the optimal solution, for a
broader range of objectives. The family of distributions from which we sample instances is the same
as the one described in Section 4.1.

A.1 Comparison to Optimal

First, we recreate Figure 1 and Figure 2, now including the objective value of the optimal solution S∗
as a benchmark for the three algorithms considered above. Since determining U(S∗) by brute force
is computationally costly, this comparison is undertaken for smaller instances (n = 20). Following
Section 4.1, we consider λ = 3.

Here Figure 3 shows the performance of XGREEDY, XPGREEDY, and ONESIDEDL+
1 relative to

the objective U(S∗) of the optimal solution, when values and probabilities are positively correlated,
uncorrelated, and negatively correlated, for a range of target sizesM . Figure 4 shows the performance
of XGREEDY, XPGREEDY, and ONESIDEDL+

1 relative to U(S∗) as the penalty regularizer increases,
for negatively correlated xi and pi and again for a range of target sizes M .

It is noteworthy that in both Figure 3 and Figure 4, the best algorithms in each setting nearly attain the
optimal objective value. It is unclear the extent to which we should expect that this continues to hold
for larger instances, where solving the optimal solution by brute force is computationally infeasible.

A.2 Other Objectives

In Section 4.2 and Section A.1, we examine the performance of different algorithms for the L+
1 loss,

since this is the loss function for which we derive worst-case multiplicative guarantees and for which
the algorithm ONESIDEDL+

1 was designed.

However, it is still interesting to investigate how these algorithms perform with respect to other
loss functions, despite the absence of worst-case theoretical guarantees for these greedy heuristics.
Figure 5 compares the greedy heuristics between the L+

1 and L+
2 loss objectives across different

correlation regimes. Figure 6 does the same for the two-sided L1 and L2 loss objectives.

In Figure 5 the performance of both greedy heuristics is very similar under the two one-sided losses.
For the two-sided losses L1 and L2, Figure 6 suggests that the relative strengths of the two greedy
heuristics remain roughly the same across the choice of two-sided loss. We observe that the objective
values are no longer uniformly positive, and are no longer monotonically increasing in the target
size. This is because the problem under the two-sided losses is fundamentally more difficult: Under
one-sided losses, only selecting over the target is penalized; it is straightforward to observe that
selecting M items always yields a penalty of 0 and hence a positive objective value. Under two-sided
losses, selecting under the target and selecting over the target is both penalized; there is also non-
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Figure 3: Sampling from the beta distribution with positive, no, and negative correlation. Here
n = 20 and λ = 3, and OPT denotes U(S∗).
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Figure 4: Performance for increasing penalty regularizer λ. Here n = 20 and sampling is via the
negatively correlating beta distribution.
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Figure 5: Evaluation of greedy heuristics for L+
1 versus L+

2 one-sided loss. Here n = 50 and λ = 3.

zero variance towards achieving the exact target M , and hence the objective is negative when the
regularizer λ is large.

Comparing the two-sided losses L1 and L2, the problem under the L2 loss is more difficult due to
its higher penalty (the quadratic function always attains a higher value than the linear function on
integers). The objective starts decreasing as a function of the target M : If we are aiming at a larger
target M , more items are selected, leading to an inevitable increase in the variance and hence a lower
objective.

We observe that XPGREEDY seems to dramatically outperform XGREEDY when the loss is two-sided.
We provide an informal explanation, using the two-sided L2 loss as an example. Under this loss, a
candidate i contributes xipi to the reward term of the objective, while contributing pi(1− pi) to the
variance of the realized size. When faced with two candidates of equal value xi, we should therefore

14



1 2 3 4 5

Target

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
b

je
ct

iv
e

twoside-l1 (pos)

xGreedy

xpGreedy

1 2 3 4 5

Target

0.0

0.5

1.0

1.5

2.0

O
b

je
ct

iv
e

twoside-l1 (no)

xGreedy

xpGreedy

1 2 3 4 5

Target

−1.0

−0.8

−0.6

−0.4

O
b

je
ct

iv
e

twoside-l1 (neg)

xGreedy

xpGreedy

1 2 3 4 5

Target

1.0

1.5

2.0

2.5

3.0

3.5

4.0

O
b

je
ct

iv
e

twoside-l2 (pos)

xGreedy

xpGreedy

1 2 3 4 5

Target

−1.0

−0.5

0.0

0.5

1.0

1.5
O

b
je

ct
iv

e

twoside-l2 (no)

xGreedy

xpGreedy

1 2 3 4 5

Target

−6

−5

−4

−3

−2

−1

O
b

je
ct

iv
e

twoside-l2 (neg)

xGreedy

xpGreedy

Figure 6: Evaluation of greedy heuristics for L1 versus L2 two-sided loss. Here n = 50 and λ = 3.

at the margin prefer the candidate with the higher probability, since this candidate contributes less to
the variance per contribution to the reward. Note that for sufficiently large λ two-sided loss functions
encourage algorithms to choose solutions expected size very close M , meaning that the variance and
the two-sided L2 loss are nearly equal. Here XPGREEDY prefers this higher-probability candidate,
while XGREEDY is indifferent, explaining the superior performance of XPGREEDY.

B Proofs

In this section, we present the proofs of all theoretical results.

B.1 Preliminaries

For any set or event S, we use S to denote its complement. We use the notation f(x) . g(x) to
denote that there exists some universal positive constant c > 0, such that f(x) ≤ c · g(x), and use the
notation f(x) & g(x) when g(x) . f(x).

For any vector x ∈ Rn and set S ⊆ [n], we use the shorthand xS := {xi}i∈S . We say that S is
a prefix of the ordered elements {a1, . . . , an}, if S = {1, 2, . . . , k} for some k ∈ {0, . . . , n}. Let
µS := E[

∑
i∈S Zi] =

∑
i∈S pi. We also denote by µ∗ := µS∗ the expected size of the optimal

subset.

The following lemma shows the submodularity of the objective U in the selection S.

Lemma 1. If ρ(·,M) is convex then U(S) is submodular in S.

The proof of this lemma is provided in Appendix B.2. The submodularity is used for analyzing
ρ = L+

1 (in Section 3.2.2 and the proofs in Appendix B.8).

For the L+
1 loss, the following lemma allows us to reason about the cardinality of S∗ in the case when

the penalty λ is larger than any of the values.
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Lemma 2 (Mean Bound). There exists a universal constant c0 > 0 such that the following is true.
Consider the L+

1 objective. For any ε ∈ (0, 34 ), if xmax ≤ (1− ε) · λ, then either

|S∗| ≤ c0 log( 1
ε )

pmin
(4a)

or

µ∗ ≤ 101

100
M. (4b)

The proof of this lemma is provided in Appendix B.2.1. It is used in the proofs of Theorem 3 and
Theorem 4. Intuitively, this lemma says that so long as all values are less than and bounded away
from λ, either the optimal solution has expected size which is at most on the order of M , or the
number of items in the optimal solution is small enough that concentration does not apply.

B.2 Proof of Lemma 1

We write out the objective U(S) over all possible realizations of Z ∈ {0, 1}n:

U(S) := R(S)− λ · E [ρ (|SZ |, M)]

=
∑
i∈S

pixi − λ
∑

z∈{0,1}n
P(Z = z) · ρ

(∑
i∈S

zi, M

)
. (5)

The first term in (5) is additive, and hence submodular. Since ρ is convex, it can be verified that the
loss ρ

(∑
i∈S zi, M

)
is supermodular in S for each fixed realization z. Taking linear combinations

of these terms yields the submodularity of U(S).

B.2.1 Proof of Lemma 2

Recall that S∗ denotes the optimal solution under the L+
1 objective. Denote by i∗ := arg mini∈S∗ pi

the item in the optimal selection with the minimal probability, and denote S := S∗ \ {i∗}. In what
follows, we prove claim (4) by deriving a lower bound and an upper bound on P(

∑
i∈S Zi ≤M).

Lower bounding P(
∑
i∈S Zi ≤ M) by the optimality of S∗. Recall that the variance term

penalizes the case when the total number of accepted items exceeds M . Hence, adding item i∗ to the
set S is only beneficial if P(

∑
i∈S Zi ≥M) is small. Formally, we have

U(S∗)− U(S) = xi∗pi∗ − λE
[

(
∑
i∈S

Zi + Zi∗ −M)+ − (
∑
i∈S

Zi −M)+

]
= xi∗pi∗ − λpi∗ · P

(∑
i∈S

Zi ≥M
)

By the optimality of S∗, we have U(S∗) ≥ U(S), and hence

P
(∑
i∈S

Zi > M
)
< P

(∑
i∈S

Zi ≥M
)

≤ xi∗pi∗

λpmin
≤ xi∗

λ

(i)
≤ 1− ε,

where step (i) is true by the assumption that xmax ≤ (1− ε)λ. Equivalently, we have

P
(∑
i∈S

Zi ≤M
)
≥ ε. (6)

Upper bounding P(
∑
i∈S Zi ≤M) by concentration. Let the universal constant c be such that

c ≥ 200
log( 4

3 )
. Then in (4a) we have c log( 1

ε )

pmin
≥ 200. Hence, it suffices to consider the case when

|S∗| ≥ 200. In what follows, we assume that condition (4b) does not hold. That is, we assume
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µ∗ > 101
100M . We prove that condition (4a) holds. To do so, we apply the multiplicative Chernoff

bound on P(
∑
i∈S Zi ≤M). We first establish a relation between µS and M . Using the definition

that i∗ is the item with the smallest probability in the selection S∗, we have

µ∗ =
∑
i∈S

pi + pi∗ ≤
|S∗|
|S∗| − 1

µS
(i)
≤ 200

199
µS , (7)

where step (i) uses the assumption that |S∗| ≥ 200. Combining (7) with the assumption that
µ∗ > 101

100M , we have

101

100
M < µ∗ ≤ 200

199
µS

M <
200

199
· 100

101
µS ≤ (1− c0)µS ,

where c0 > 0 is a universal constant. Since µS > M , by the multiplicative Chernoff bound,

P
(∑
i∈S

Zi ≤M
)
≤ P

(∑
i∈S

Zi ≤ (1− c0)µS

)
≤ Exp

(
−c

2
0µS
2

)
≤ Exp

(
−c

2
0 · |S| · pmin

2

)
(8)

Now we combine the lower bound bound (6) and the upper bound (8) on P(
∑
i∈S Zi ≤M), we have

ε ≤ P
(∑
i∈S

Zi ≤M
)
≤ Exp

(
−c

2
0 · |S| · pmin

2

)
and so

|S| ≤ 2

c20
· log( 1

ε )

pmin
.

By the assumption that ε ≤ 3/4, we have |S∗| = |S| + 1 ≤ c log( 1
ε )

pmin
for some universal constant

c > 0, satisfying condition (4a).

B.3 Proof of Proposition 1

We fix any target size M > 0. For notational simplicity, we use the shorthand ρ(·) := ρ(·,M)
for the loss function. Recall that Algorithm 1 sorts the items in decreasing order of probability as
p1 ≥ . . . ≥ pn, with ties broken arbitrarily. In what follows, we first show that there exists a prefix of
this ordering that is an optimal selection. Then we show that using the stopping criterion achieves the
minimum variance among all prefixes, and hence is an optimal selection.

Step 1: A prefix in decreasing order of pi achieves an optimal selection. Assume that there
exists an optimal selection, denoted by S∗ ⊆ [n], that is not a prefix in decreasing order of pi. By the
assumption that S∗ is not a prefix, there must exists items i ∈ S∗ and i′ 6∈ S∗, such that pi′ ≥ pi. We
now show that S∗′ := S∗ ∪ {i′} \ {i}, namely removing i from S∗ and then adding i′, also yields an
optimal selection.

If p′i = pi, it is straightforward to see that S∗′ = S∗ ∪ {i′} \ {i} is optimal. Now we consider the
case pi′ > pi. For any subset S ⊆ [n], we consider the additional variance induced by adding any
item k 6∈ S to the subset S:

V (S ∪ {k})− V (S) = EZS∪{k}

ρ
 ∑
i∈S∪{k}

Zi

− ρ(∑
i∈S

Zi

)
(i)
= EZS

EZk ρ
 ∑
i∈S∪{k}

Zi

− ρ(∑
i∈S

Zi

)
(ii)
= pk · EZS

[
ρ

(∑
i∈S

Zi + 1

)
− ρ

(∑
i∈S

Zi

)]
︸ ︷︷ ︸

T (S)

, (9)
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where (i) is true by the assumption that the random variables {Zi}ni=1 are independent, and (ii) is
true by taking an expectation over Zt. Note that the term T defined in (9) is independent from the
probability pk associated with item k. Setting S = S∗ \ {i} and k ∈ {i, i′} in (9), we have

V (S∗)− V (S∗ \ {i}) = pi · T (S∗ \ {i}), (10a)

V (S∗′)− V (S∗ \ {i}) = pi′ · T (S∗ \ {i}), (10b)

Combining (10a) with the assumption that S∗ is an optimal selection, we have T (S∗ \ {i}) ≥ 0.
Combining (10) with the assumption that pi′ > pi, we have

V (S∗′) ≥ V (S∗) . (11)

Since by assumption S∗ is an optimal selection, the equality holds in (11) and S∗′ is also an optimal
selection.

If S∗′ is not a prefix, we keep repeating the same modification, until the resulting selection is a prefix.
Since pi′ ≥ pi, we have i′ ≤ i, and hence in each modification, the sum of the indices in the selection
decreases, namely

∑
k∈S∗′ k <

∑
k∈S∗ k. Hence, the sequence of modifications terminates, yielding

an optimal selection that is a prefix.

Step 2: The stopping criterion obtains a best prefix among all prefixes. We now show that the
stopping criterion in Algorithm 1 obtains a prefix with the minimum variance among all prefixes.
By Step 1, there exists a prefix that is an optimal selection, so this prefix obtained by the stopping
criterion is optimal.

We consider the term T in (9) when adding to a selection S ⊆ [n] some new item k 6∈ S. We have

T (S ∪ {k}) = EZSEZk

ρ
 ∑
i∈S∪{k}

Zi + 1

− ρ
 ∑
i∈S∪{k}

Zi


= pkEZS

[
ρ

(∑
i∈S

Zi + 2

)
− ρ

(∑
i∈S

Zi + 1

)]
+ (1− pk) · EZS

[
ρ

(∑
i∈S

Zi + 1

)
− ρ

(∑
i∈S

Zi

)]
(i)
≥ EZS

[
ρ

(∑
i∈S

Zi + 1

)
− ρ

(∑
i∈S

Zi

)]
= T (S), (12)

where step (i) uses the property that ρ(t+ 2)− ρ(t+ 1) ≥ ρ(t+ 1)− ρ(t) for any t ∈ R, due to the
convexity of ρ. By the definition of Algorithm 1, it yields a prefix {1, 2, . . . , i∗} such that T ([i]) ≤ 0
for all i ≤ i∗, and T ([i∗ + 1]) > 0. By (12), it can be verified that T ([i]) > 0 for all i > i∗. Hence,
the variance decreases or stays the same for adding each item up to item i∗, and then strictly increases
for adding each of item (i∗ + 1) to item n. Hence, the prefix [i∗] attains the minimal variance among
all prefixes, and hence is an optimal selection.

B.4 Proof of Proposition 2

Consider any instance (x, p, λ,M) and any constant c > 0. It is straightforward to verify that the
optimal solution and the solution given by any of the three greedy algorithms is identical for the
instance (x, p, λ,M) and the instance (cx, p, cλ,M). Hence, it suffices to construct an instance for a
fixed value of λ > 0. We now construct instances for the greedy algorithms separately.

Instance for PGREEDY. Let M = 1. We consider an instance consisting of two items:

(x1, p1) = (0, 1)

(x2, p2) = (1, p),

for some p ∈ [0, 1) whose value is specified later. It is straightforward to derive that PGREEDY selects
item 1, attaining an objective of 0. On the other hand, the objective of only picking item 2 is:

p− λ(1− p).
We take p to be sufficiently large (close to 1) such that p/(1− p) > λ. Then the objective of only
picking item 2 is strictly positive, and hence the objective of the optimal solution is strictly positive.
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Instance for XGREEDY and XPGREEDY. Let M = 1. We consider an instance consisting of two
items:

(x1, p1) = (1, 1)

(x2, p2) =

(
2 + ε,

1

2

)
,

for some ε > 0 whose value is specified later. The objective for the four possible selections is
computed as:

U(∅) = −λ
U({1}) = 1

U({2}) = 1 +
ε− λ

2

U({1, 2}) = 2 +
ε− λ

2
.

It is straightforward to derive that both XGREEDY and XPGREEDY pick item 2 first followed by item
1, attaining an objective of 2+ ε−λ

2 . We set set any value of λ such that λ > 4, and set ε = λ
2 −2 > 0.

The objective becomes 1 − λ
4 < 0. On the other hand, the optimal selection is S∗ = {1}, with a

positive objective of 1.

B.5 Proof of Theorem 1

We first describe a pseudo-polynomial time algorithm in [3] for solving a specific form of rank-1
binary quadratic programming. Then we describe our algorithm, which operates by rounding the
parameters and using the pseudo-polynomial time algorithm as a sub-routine.

Pseudo-polynomial time algorithm of [3]. The authors of [3] study unconstrained binary
quadratic programming problems of the form

min
x∈{0,1}n

〈x,Ax〉+ 〈b, x〉.

where A ∈ Rn×n is symmetric and a ∈ Rn. When A has rank one, this can be reformulated as

min
x∈{0,1}n

f(x) = min
x∈{0,1}n

〈a, x〉+ γ(β + 〈u, x〉)2 (13)

for some a, u ∈ Rn and γ, β ∈ R; it is worth noting that there are degrees of freedom in the
coefficients in this reformulation.

Their approach depends on the magnitude of the coefficients and scalars of this problem. Then they
show the following:

Proposition 3 (Proposition 1 of [3] with d = 1). Consider an instance of (13) with u ∈ Zn, β ∈ Z,
a ∈ Zn, and γ ∈ Q. Let K := 2 max(‖u‖∞, ‖a‖∞). Then the minimum objective attained by (13)
can be computed in O(K4n5) time.

We refer to the algorithm satisfying Proposition 3 as R1UBQPSOLVER, which is described within
the proof of Proposition 1 in [3]. R1UBQPSOLVER takes as inputs (a, u, γ, β), and outputs the
minimum objective attained by (13). We also note that while R1UBQPSOLVER as stated requires
γ ∈ Q, this serves only as a sufficient condition for arguing that arithmetic operations involving γ
can be performed efficiently. Since our runtime analysis will be in terms of the number of arithmetic
operations performed, we will remain agnostic to the exact representation of the numbers in our
problem instance.

Modified R1UBQP Solver. It will be convenient for us to use a slightly more general version of this
binary quadratic programming algorithm, which essentially serves as a rescaling of R1UBQPSOLVER.
We will call this R1UBQPSOLVER2 (algorithm 3).
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Algorithm 3 R1UBQPSOLVER2

Require: u ∈ Zn, β ∈ Z, a ∈ Qn such that a = a′

E for some a′ ∈ Zn and E ∈ N, and γ ∈ R
Ensure: minb∈{0,1}n 〈a, b〉+ γ(β + 〈u, b〉)2

1: a′ ← Ea
2: γ′ ← Eγ
3: return 1

ER1UBQPSOLVER(a′, γ′, β, u)

Proposition 4. Consider an instance of (13) with u ∈ Zn, β ∈ Z, a ∈ Qn such that a = a′

E for
some a′ ∈ Zn and E ∈ N, and γ ∈ R. Let K ′ := 2 max(‖u‖∞, ‖a′‖∞). Then R1UBQPSOLVER2
computes the minimum objective attained by (13) in O(K ′4E4n5) time.

Proof. The correctness of R1UBQPSOLVER2 follows immediately from Proposition 3. For the
runtime guarantee, note that the invocation of R1UBQPSOLVER is with a′i = Eai, so the guarantee
from R1UBQPSOLVER holds with K ≥ EK ′.

Proposed FPTAS. We now derive the following FPTAS for our problem, which uses
R1UBQPSOLVER2 as a subroutine:

Algorithm 4 APPROXL2

Require: Problem instance I = (x, p, λ,M); additive error ε > 0
Ensure: S ⊆ [n] for which U(S) ≥ U(S∗)− ε

1: D ← d2nλ(2M + 3(n+ 1))/εe
2: E ← d2n/εe
3: ā← 1

E bE (−p ◦ x+ λ · p− λ · (p ◦ p))c
4: γ′ ← λ/D2

5: β′ ← DM
6: u′ ← bDpc
7: OPT ← −R1UBQPSOLVER2(ā, γ′, β′, u′)
8: S ← [n]
9: while ∃i ∈ S such that −R1UBQPSOLVER2(ā|S\{i}, γ′|S\{i}, β′|S\{i}, u′|S\{i}) = OPT do

10: S ← S \ {i}
11: return S

Given an instance of our problem, APPROXL2 generates a rounded instance and then runs
R1UBQPSOLVER2 on this rounded instance. The objective is guaranteed to be close to opti-
mal, and so APPROXL2 first finds the optimal rounded value, and then identifies a set which attains
this rounded value.

We prove that APPROXL2 (Algorithm 4) is a FPTAS for our problem when ρ = L2.

Rewriting the objective in the form of (13). We begin by establishing that if ρ = L2 then U(S)
can be written in the form of Eq. (13). Recall from (2) that our objective can be written as

U(S) =
∑
i∈S

pixi − λ · E
(∑
i∈S

Zi −M
)2

,

and recall from (3) that using the notation b ∈ {0, 1}n where bi := 1{i ∈ S} (and additionally
abusing notation to let U(b) := U(S(b))), we have

U(b) =
∑
i∈[n]

bipixi − λ · E

∑
i∈[n]

biZi −M

2

. (14)
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For any two vectors u, v ∈ Rn, let u ◦ v denote the entrywise product. Expanding the squared term
in (14) yields

U(b) =
∑
i∈[n]

bipixi − λ ·

E

∑
i∈[n]

biZi

2

− 2M
∑
i∈[n]

bipi +M2


(i)
= (p ◦ x)T b− λ · E

∑
i∈[n]

biZi +
∑

(i,j)∈[n]2,i6=j

bibjZiZj

+ 2λM · pT b− λM2

= (p ◦ x)T b− λ · pT b− λ ·
∑

(i,j)∈[n]2,i6=j

bibjpipj + 2λM · pT b− λM2

= (p ◦ x)T b− λ · pT b− λ ·


∑
i∈[n]

bipi

2

−
∑
i

b2i p
2
i

+ 2λM · pT b− λM2,

where step (i) uses the fact that bi and Zi are binary, and hence b2i = bi and Z2
i = Zi. Using the fact

that bi is binary again, we have

U(b) = (p ◦ x)T b− λ · pT b− λ · (pT b)2 + λ · (p ◦ p)T b+ 2λM · pT b− λM2

= (p ◦ x− λ · p+ λ · (p ◦ p))T b− λ
(
−M + pT b

)2
. (15)

Negating (15) yields

min
S⊆[n]

−U(b) = min
b∈{0,1}n

(−p ◦ x+ λ · p− λ · (p ◦ p))T b+ λ
(
−M + pT b

)2
, (16)

which matches the form of (13) with

a := −p ◦ x+ λ · p− λ · (p ◦ p), (17)
γ := λ,

β := −M,

u := p.

Rounding the parameters. We argue that rounding the parameters of an instance does not sig-
nificantly affect the objective value. Consider rounded probabilities p̄, with |pi − p̄i| ≤ 1/D and
rounded ai with |ai − āi| ≤ 1/E, for some integers D and E to be specified later. How much does
the value of (13) change for the input (17) if these ui = pi are changed to ū := p̄i and ai to āi,
regardless of b? Let Ψ(b, a, γ, β, u) = 〈a, b〉+ γ(β + 〈u, b〉)2 for concreteness, with the choice of
variables specified in (17). Letting p′i := pi − p̄i (for compactness), the difference before and after
rounding is bounded by

∆ = |Ψ(b, a, γ, β, u)−Ψ(b, ā, γ, β, ū)|
≤
∣∣(a− ā)T b

∣∣+ γ
∣∣(pT b)2 − (p̄T b)2 − 2M(p− p̄)T b

∣∣
≤ n

E
+ γ

(∣∣(pT b)2 − (p̄T b)2
∣∣)︸ ︷︷ ︸

T

+γ
(

2M
n

D

)
(18)
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We bound the term T by

T =
∑
i6=j

bibj(pipj − p̄ip̄j) +
∑
i

b2i (p
2
i − p̄2i )+

≤
∑
i6=j

|pipj − p̄ip̄j |+
∑
i

∣∣p2i − p̄2i ∣∣
≤
∑
i6=j

(p̄ip
′
j + p̄jp

′
i + p′ip

′
j) +

∑
i

(2p̄ip
′
i + p′2i )

≤
∑
i6=j

(p′j + p′i + p′ip
′
j) +

∑
i

(2p′i + p′2i )

≤ 2n2
1

D
+ n2

1

D2
+ n

2

D
+ n

1

D2

=
n

D

(
2(n+ 1) +

n+ 1

D

)
(19)

Plugging (19) back to (18), we have

∆ ≤ n

E
+
γn

D

(
2(n+ 1) +

n+ 1

D
+ 2M

)
. (20)

Recalling that γ = λ for our problem. It can be verified by (20) that choosing D ≥ 2nλ(2M + 3(n+
1))/ε and E ≥ 2n/ε ensures that |Ψ(b, a, γ, β, u)−Ψ(b, a, γ, β, ū)| ≤ ε, for any arbitrary binary
vector b.

We now define rounded versions of the problem parameters, which are rounded to increments of D.
For all i, let

Pi := bDpic

ūi :=
Pi
D

=
1

D
bDpic

u′i := Pi = bDpic,

and β′ := −DM and γ′ := γ
D2 = λ

D2 . Then letting S(b) be the set indicated by b,

Ψ(b, a, γ, β, u) = 〈a, b〉+ γ(β + 〈u, b〉)2 = −U(S(b))

by (16), while

Ψ(b, ā, γ′, β′, u′) = 〈ā, b〉+ γ′(β′ + 〈u′, b〉)2 (21)

= 〈ā, b〉+
γ

D2
(βD + 〈u′, b〉)2

= 〈ā, b〉+ γ

(
β +

〈
u′

D
, b

〉)2

= Ψ(b, ā, γ, β, ū).

We have just argued that |U(S(b))−Ψ(b, ā, γ, β, ū)| ≤ ε when D ≥ 2nλ(2M + 3(n+ 1))/ε and
E ≥ 2n/ε. Observe also that the parameters ā, γ′, β′, u′ are such that (21) satisfies the requirements
for Proposition 4. Therefore OPT ← −R1UBQPSOLVER2(ā, γ′, β′, u′) is some objective value
within ±ε of our optimal value U(S∗).

Algorithm 4 therefore begins by finding some value OPT which is the optimal value of the rounded
instance of the problem realized by some b ∈ {0, 1}n and within ε of −U(S(b)f). Since whatever
value the b∗ corresponding to S∗ attains on the rounded instance is within ε of −U(S∗), it follows
that this b is an additive ε-approximation to U(S∗).

The remainder of APPROXL2 is dedicated to reconstructing the set S(b) itself. It does this by
iteratively removing candidate components of the solution i ∈ [n], determining whether or not each
is necessesarily part of some such S(b) (subject to the i already discarded).
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Runtime. R1UBQPSOLVER2 has runtime O(K4E4n5), and our reduction takes K to be the
maximum of D and max(λ, xmax)/E. In our reduction, E = O((1 + λ)n(M + n)/ε). Since
APPROXL2 makes one call to R1UBQPSOLVER and all other steps are negligible, it therefore runs
in time O(n

9(M+n)4(1+λ)4

ε4 ).

In the case that xi ≥ 0 for all i ∈ n, we assume that M ≤ n, since for M ≥ n it is optimal to take
S = [n]; in this case the runtime guarantee is therefore O(n

13(1+λ)4

ε4 ).

B.6 Proof of Theorem 2

Starting from (16), we follow the reduction from SUBSETSUM outlined in Section 2 of [3]. Given
an instance of SUBSETSUM, we construct an instance of our problem with the L2 objective. We
construct the pi from the SUBSETSUM instance weights such that M = 1.2

An instance of SUBSETSUM is given by a set of natural numbers (t1, . . . , tn) and a target sum T .
We assume that T > 0, since it is trivial to decide instances where T = 0. Again let b be the binary
indicator for the set S(b). Then

∑
i∈S(b) ti = T if and only if (

∑
i biti−T ) = 0. We assume without

loss of generality that ti ≤ T , so let us rescale the instance of and take pi := ti/T . Our target is now
M := 1 and these pi ∈ [0, 1] are valid probabilities.

We now choose the remaining problem parameters, such that the linear term becomes zero, and the
quadratic term becomes the SUBSETSUM problem. Since a = −p ◦ x+ λ · p− λ · (p ◦ p), we ensure
that c̃ = 0 by choosing xi := λ(1− pi) for all i ∈ [n]. Note that xi ≥ 0. The regularizer λ > 0 can
be freely chosen. Then

U(Sb) = −Ψ(b, a, γ, β, u)

= −aT b− γ(β + uT b)2

= −λ
(
−1 +

∑
i

bi
ti
T

)2

= − λ
T

−T +
∑
i∈S(b)

ti

2

.

Clearly U(S) ≥ 0 if and only if
∑
i∈S ti = T , and so any algorithm for finding the optimal subset

S∗ for our problem can be used to solve SUBSETSUM, completing the reduction.

B.7 Proof of Theorem 3

We prove the three parts of the proposition separately. For proving upper bounds on the approximation
ratio, we construct “bad” instances. Using the same argument as in the proof of Proposition 2 that the
values {xi}i∈[n] may be rescaled according to λ or vise versa, it suffices to construct instances for a
fixed value of λ > 0.

For proving lower bounds for XGREEDY and XPGREEDY (across all instances), it is without loss
of generality to assume that all xi ≥ 0. Since the loss ρ = L+

1 is monotonic, adding an item
always increases the penalty term, and thus adding an item with negative value always decreases the
utility. Moreover, all items with negative values form a suffix in the order used by XGREEDY and
XPGREEDY, so there are no more items with positive values once the greedy algorithms reach the
first negative item. Therefore, XGREEDY and XPGREEDY never choose solutions containing any item
with negative value, and hence such items can be ignored for the purposes of these proofs.

B.7.1 Proof of Theorem 3(a)

Let M = 1. Consider an instance consisting of two items:
(x1, p1) = (0, 1)

(x2, p2) =

(
1,

1

2

)
.

2One can instead reduce from EQUIPARTITION by following this construction but ensuring that M = 2.
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Then PGREEDY selects item 1, attaining an objective of 0. On the other hand, selecting item 2 attains
a strictly positive objective of 0.5.

B.7.2 Proof of Theorem 3(b)

We separately prove the upper and lower bounds for XPGREEDY.

Upper bound for XPGREEDY. First, suppose that pmin is such that 1/pmin ∈ {2, 3, 4, . . .}. We
assume this without loss of generality in order to show that XPGREEDY is Ω(pmin) for any pmin ∈
(0, 1]. This is because for any pmin ∈ (1/2, 1] the lower bound obtains a constant factor and so is
Θ(pmin). And for any choice pmin ∈ (0, 1/2), consider the instance outlined below with 1

d1/pmine
as the minimum probability, together with an additional item for which (pi, xi) = (pmin, 0). Then
XPGREEDY never chooses this last item, and the instance below demonstrates an upper bound of
O( 1
d1/pmine ) = O(pmin).

Our instance is as follows. Let M = 1 and λ = 1+2c
pmin

, and consider an unlimited number of items
from two types:

(x1, p1) =
(

1 +
c

2
, 1
)

(x2, p2) =

(
1

pmin
, pmin

)
.

Note we also assume without loss of generality that c ≤ 1/2, since if xi ≤ (1 − c) · λ is true for
some c > 1/2 then it is true for c ≤ 1/2 also. Then it can be verified that xi ≤ (1− c) · λ for this
instance. Specifically, we have

(1− c) · λ =
1 + c− 2c2

pmin
≥ 1 + c− 2c2 ≥ 1 +

c

2
= x1

and

(1− c) · λ =
1 + c− 2c2

pmin
≥ 1

pmin
= x2,

for any c ∈ (0, 1/2].

XPGREEDY adds items one-by-one from the first type. The objective after adding one item is (1+c/2).
If a second item is added, the marginal change in the objective is 1 + c

2 − λ = 1 + c
2 − 1+2c

pmin
< 0.

Hence, XGREEDY selects exactly one item from the first type, attaining an objective of (1 + c/2).

Now consider a selection S consisting of t items of the second type. We now show that for some
choice of t, the objective attained by S is U(S) = Ω( 1

pmin
). We have

U(S) = R(S)− λ · V (S)

= t− λ · E
(
|SZ | − 1

)
+

= t− λ
(
E|SZ | − 1 + P(|SZ | = 0)

)
= t− λ

(
t · pmin − 1 + (1− pmin)t

)
.

Choosing t = 1
pmin

, we have

U(S) =
1

pmin
− λ

(
1

pmin
· pmin − 1

)
− λ (1− pmin)

1
pmin

=
1

pmin
− λ (1− pmin)

1
pmin

≥ 1

pmin
− λ

e
.
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Substituting in λ, this becomes

U(S) ≥ 1

pmin
− 1

e
· 1 + 2c

pmin

=
1

pmin
· e− 1− 2c

e
,

which is Ω(1/pmin) since c ≤ 1/2.

Therefore we have an instance for which U(SXP) ≤ c′ · pminU(S) for some constant c′, establishing
an upper bound of O(pmin) on the approximation ratio.

Lower bound for XPGREEDY. First, if the total number of items is at most M , then it can be
verified that selecting all items is optimal.

We denote by SM be the M items with highest expected values xipi, and denote by SXP the solution
that XPGREEDY finds. Moreover, we have SM ⊆ SXP, because all values are assumed nonnegative,
and the penalty term for the L+

1 loss is zero when adding the first M items. By definition, XPGREEDY
only improves the objective in each step. Hence, we have

U(SM ) ≤ U(SXP). (22)

We now provide a lower bound for the selection SM . Applying the Mean Bound (Lemma 2) with
ε = min(c, 1/2), we have either

|S∗| ≤ c′

pmin
(23a)

where c′ is a constant, or

µ∗ ≤ 101

100
M. (23b)

If (23a) holds, we have |S∗| ≤ cM
pmin

because M ≥ 1 . If (23b) holds, we have pmin · |S∗| ≤ µ∗ ≤
101
100M , and hence |S∗| ≤ 101

100 · Mpmin
. Combining the two cases, we have

|S∗| . M

pmin
. (24)

Next, we consider the expected reward R(SM ) for the selection SM . We note that |S∗| ≥ |SM | = M
by the optimality of S∗. This is because xi ≥ 0, so adding any item to a selection containing less
than M items only increases the objective. Recall that the selection SM consists of the M items with
the maximum expected reward pixi. Hence, the mean expected reward pixi for the set SM (over all
items in this set) is greater than or equal to the mean expected reward for the set S∗. Namely,

1

M
R(SM ) =

1

|SM |
∑
i∈SM

pixi

≥ 1

|S∗|
∑
i∈S∗

pixi =
1

|S∗|R(S∗).

Hence, we have

U(SM ) = R(SM ) ≥ M

|S∗|R(S∗)

(i)
& pmin ·R(S∗) ≥ pmin · U(S∗), (25)

where step (i) is true by plugging in (24). Combining (25) with (22), we have

U(SXP) ≥ U(SXP) & pmin · U(S∗),

completing the proof of the lower bound Ω(pmin) of the approximation ratio for XPGREEDY.
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B.7.3 Proof of Theorem 3(c)

We separately prove the upper and lower bounds for XGREEDY.

Upper bound for XGREEDY. Let M = 1 and λ = 2
p . Consider an instance consisting of an

unlimited number of items from two types:

(x1, p1) = (1, pmin)

(x2, p2) = (1− ε, 1),

where ε ∈ (0, 1) is a constant, and pmin ∈ (0, 1). We again suppose without loss of generality that
c ≤ 1/2, and it can be verified that xi ≤ (1− c) · λ for both types of items.

XGREEDY adds items one-by-one from the first type. The objective after adding one item is pmin. If
a second item is added, the marginal change in the objective is pmin − λp2min = −pmin < 0. Hence,
XGREEDY selects exactly one item from the first type, attaining an objective of pmin.

On the other hand, choosing a single item from the second type attains an objective value of (1− ε).
Therefore XGREEDY has a worst-case approximation ratio of at most pmin

1−ε , namely O(pmin).

Lower bound for XGREEDY. We modify the construction of SM in the proof of part (b) to be the
set of M items with the highest values xi, Then we apply similar arguments as in part (b), and outline
the steps as follows.

Denote by SM the set of M items with the highest values xi, and denote by SX the solution that
XGREEDY finds. Then again we have SM ⊆ SX and hence

U(SM ) ≤ U(SX). (26)

We now provide a lower bound for the selection SM . Using the same argument as in part (b), we
have (cf. (24)):

|S∗| . M

pmin
. (27)

We note that |S∗| ≥ |SM | = M by the optimality of S∗. Since the selection SM consists of the M
items with the maximum values xi, the mean value for the set SM is greater than or equal to the
mean value for the set S∗. Namely,

1

M

∑
i∈SM

xi ≥
1

|S∗|
∑
i∈|S∗|

xi.

Next note that for any i ∈ SM , 1
pmin

(pixi) is larger than pjxj for any j ∈ S∗ \ SM , since for such i
and j we have 1

pmin
(pixi) ≥ xi ≥ pjxj . Therefore,

U(SM ) = R(SM ) =
∑
i∈SM

pixi ≥ pmin

∑
i∈SM

xi

≥ pmin ·
M

|S∗|
∑
i∈S∗

xi

≥ pmin ·
M

|S∗|
∑
i∈S∗

pixi

(i)
& p2min ·R(S∗) ≥ p2min · U(S∗), (28)

where step (i) is true by plugging in (27). Combining (26) with (28) completes the proof of the lower
bound Ω(p2min) of the approximation ratio for XGREEDY.

B.8 Proof of Theorem 4

Notation. We begin with some notation that is used in the proofs in this section. Given any
instance {xi, pi}i∈[n], we construct a rounded instance {yi, qi}i∈[n] as follows. First we round up the
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probabilities pi to qi := 2dlog2 pie, that is, the smallest power of two that is greater than or equal to pi.
Then we construct new values yi such that the expected value of each item is preserved. Formally,

qi := min

{
1

2i
, i ∈ N :

1

2i
≥ pi

}
,

yi :=
pi
qi
xi.

We slightly abuse the notation, and for any selection S = {xi, pi}i∈[n], we denote by S′ :=
{yi, qi}i∈[n] the corresponding set with rounded probabilities and values. The parameters M and λ
for this rounded instance remain unchanged. Note that by construction, we have

R(S) = R(S′) (29a)

V (S) ≤ V (S′) (29b)

U(S) ≥ U(S′), (29c)

Eq. (29a) holds by the definition of the rounded set S′; Eq. (29b) in fact holds for all nondecreas-
ing loss function ρ, because

∑
i∈S′ Zi stochastically dominates

∑
i∈S Zi; Eq. (29c) follows by

combining (29a) and (29b).

Finally, recall the observation from Section 3.2.2 that we assume without loss of generality that
xi > 0 for all i ∈ [S], since the marginal contribution of any i for which xi ≤ 0 to any U(S) is
nonpositive.

Overview of Algorithm 2. We begin by reiterating the overview of Algorithm 2 presented in
Section 3.2.2. At a high level, this algorithm proceeds first by dividing the items into three groups
according to their values xi.

NL := {i ∈ [n] : xi ≤ (1− ε)λ}
NM := {i ∈ [n] : (1− ε)λ < xi < λ}
NH := {i ∈ [n] : xi ≥ λ}.

Since U is submodular (see Lemma 1), the optimal solution within at least one of these groups is
constant-competitive with U(S∗). We consider each group separately, and obtain a constant-factor
approximation for each group. We now provide an overview of the three cases. In particular, the
small items in NL are handled by Algorithm 5, and the medium items in set NM are handled by
Algorithm 6.

Algorithm 5 LOWVALUEL1 (with universal constant c)

Require: Problem instance I = (x, p, λ, M), with xi ≤ (1− pmin
4 )λ

Ensure: S ⊆ [n] for which U(S)/U(S∗) & 1

1: τ ← c
p2min

max
{

1, log
(

1
pmin

)
, log

(
λ
xmax

)}
2: L ← {S ⊆ [n] : |S| ≤ τ} // Brute-force small instances
3: for S ∈ L do
4: Calculate U(S)

5: SL ← arg maxS∈L U(S)
6: Let q be the rounded p and Q← {qi} the distinct rounded probabilities; let tr be the multiplicity

of each rounded probability r in the vector q. // Round large instances
7: H ← ∅
8: for s ∈∏r∈Q{0, 1, . . . , tr} do
9: Construct S from the sr many i ∈ [n] of highest xi for which qi = r, for each r ∈ Q

10: Calculate U(S), using unrounded probabilities and values
11: H ← H∪ {S}
12: SH ← arg maxS∈H U(S)
13: return S ∈ {SL, SH} maximizing U(S)
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Algorithm 6 MEDIUMVALUEL+
1

Require: Problem instance I = (x, p, λ,M), with (1− pmin
4 ) · λ ≤ xi ≤ λ

Ensure: S ⊆ [n] for which U(S)/U(S∗) = Ω(1)
1: if n ≤ 36

p2min
then

2: return arg maxS⊆[n] U(S)
3: else if µ[n] ≥M then
4: Choose any S ⊆ [n] such that M ≤ µS < M + 1
5: else
6: Choose any S ⊆ [n] such that µ[n]

3 ≤ µS ≤
µ[n]

2

7: return S

• Low-value items NL (Algorithm 5): LOWVALUEL+
1 presented in Algorithm 5 handles

the case where items have low values. It consists of two parts: a search over small candidate
solutions and a search over rounded candidate solutions. In the first part, we brute-force all
small solutions whose size are at most τ (Line 3). This brute-force search succeeds if the
optimal selection is small.
The second part is the technical crux of proving the constant-factor approximation of
LOWVALUEL+

1 . In the second part, we compute rounded probabilities and values (qi, yi) for
each item. This rounding procedure reduces the number of candidate solutions dramatically.
We then brute-force over all rounded solutions (Line 8), select the rounded solution that
maximizes the objective value, and prove that this solution is comparable to the (unrounded)
optimal solution. Since the first part succeeds the case where the optimal solution is small,
we may assume in this second part that the optimal solution is sufficiently large; this allows
us to prove that our selection is robust to rounding.
As an aside, we take the rounding to be to powers of two, but our analysis generalizes to
rounding to powers of (1 + c) for any constant c > 0, and this parameter may be tuned in
order to trade off between runtime and performance in practice.

• Medium-value items NM (Algorithm 6): MEDIUMVALUEL+
1 presented in Algorithm 6

handles items with values close to λ. If the number of items is small, it brute-forces over
all possible solutions (Line 2). If the number of items is large, the algorithm chooses any
subset such that the expected number of accepted items is around M (Line 4). If no such
subset exists, then the expected number of accepted items when choosing all items must
be less than M . In this case, then we choose a subset with approximately half the expected
realizations compared to that of all items (Line 6). We choose a proportion less than one in
order to ensure that the penalty incurred is not too large relative to the reward. This subset
(Line 6) along with the subset defined in (Line 4) and always exists, formalized in the proof
of Lemma 4 in Appendix B.8.2.

• High-value items NH: for the group of items with values above λ, it is easy to see that
choosing the entire group is optimal.

We now prove the approximation ratio and runtime for ONESIDEDL+
1 .

Proof of Theorem 4. To begin, we split the items in the optimal set S∗, according to their values:

S∗L := S∗ ∩NL,
S∗M := S∗ ∩NM ,
S∗H := S∗ ∩NH .

By the submodularity of U(S) in Lemma 1, we have U(S∗L) + U(S∗M ) + U(S∗H) ≥ U(S∗). In
particular, this implies that max{U(S∗L), U(S∗M ), U(S∗H)} ≥ 1

3U(S∗). In order to provide a constant-
factor approximation to U(S∗), it therefore suffices to identify sets which provide constant-factor
approximations to U(S∗L), U(S∗M ), and U(S∗H), and return the set with the highest objective value
among them. We choose ε := pmin/4 to determine the boundary between NL and NM , and address
each group separately. In each case we seek to find a subset which competes with the optimal subset
of NL (say), which in turn is an approximation to U(S∗L).
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Low-value items NL. The following lemma provides the approximation guarantee of LOWVAL-
UEL+

1 .

Lemma 3 (Small xi). Suppose that xi ≤ (1 − pmin
4 ) · λ for all i ∈ [n]. Then

LOWVALUEL+
1 (Algorithm 5) is a constant-factor approximation to U(S∗) which runs in time

n
c

p2min
max

{
1,log

(
1
pmin

)
,log( λ

xmax )
}

, where c is a universal constant.

The proof of this lemma is provided in Appendix B.8.1, and is arguably the heart of the analysis of
ONESIDEDL+

1 . By applying this lemma to [n] = NL we obtain SL with U(SL) within a constant
factor to the optimal objective among selections within NL, and hence a constant factor to U(S∗L).

Medium-value items NM. The following lemma provides the approximation ratio guarantee of
MEDIUMVALUEL+

1 .

Lemma 4 (Medium xi). If λ
(
1− pmin

4

)
≤ xi ≤ λ for all i ∈ [n] then MEDIUMVALUEL+

1 (Algo-
rithm 6) finds some S ⊆ [n] which is a constant-factor approximation to U(S∗) and runs in time
nO(1/p2min).

The proof of this lemma is provided in Appendix B.8.2. By applying this lemma to [n] = NM we
obtain SM with U(SM ) within a constant factor to the optimal objective among all selections within
NM, and hence a constant factor to U(S∗M ).

High-value items NH. This case is simple: we select all items by taking SH = NH . It can be
verified that adding every item strictly increases the objective, and hence NH attains the optimal
objective among all selections within NH. By the optimality of SH , we have U(SH) = U(S∗H).

Putting the three cases together, we have SL, SM , and SH , and by the argument provided above at
least one of these is a constant-factor approximation to U(S∗). Therefore choosing the one with
highest objective value gives a constant-factor approximation.

Runtime. The algorithms for the cases above operate by identifying a collection of sets to test the
objective value of, and then evaluating the objective. Fortunately this can be done efficiently.

Lemma 5 (Efficient Objective Evaluation). Suppose that ρ(a,M) is known for all a ∈ {0, 1, . . . , n}.
For any set of items {xi, pi}i∈[n], the objective U([n]) can be computed in O(n2) arithmetic opera-
tions.

This is proved in Appendix B.8.3. Applying this lemma to any candidate subset S shows that the
objective with respect S ⊆ [n] can be computed in O(|S|2) arithmetic operations.

By Lemma 3, the runtime of LOWVALUEL+
1 is n

c

p2min
max

{
1,log

(
1
pmin

)
,log( λ

xmax )
}

. By Lemma 4 the
runtime of MEDIUMVALUEL+

1 is nO(1/p2min), which is less than that of LOWVALUEL+
1 . Finally, the

high-value items case entails evaluating the objective in of a single set; by Lemma 5 this can be done
in O(n2).

The cost of combining these cases is polynomial in n, and so the brute force stage of LOWVALUEL+
1

dictates the runtime of ONESIDEDL+
1 , giving the claimed runtime of n

c 1

p2min
max

{
1,log

(
1
pmin

)
,log( λ

xmax )
}

for some universal constant c > 0.

We now turn to the statements and proofs of the supporting lemmas.

The following lemma says that the solution can be downsampled so that its
∑
i pi is at most a constant

factor from the original, while
∑
i pixi is at least a constant factor from the original. Informally, we

simply select the appropriate number of items with the highest xi.

Lemma 6 (Downsampling Lemma). Consider an instance {pi, xi}i∈[n] with xi ≥ 0 for all i ∈ [n].
Then for any S ⊆ [n] and any β ∈ [0, 1], there exists some T ⊆ S that satisfies

µT ≤ β · µS (30a)

29



and

R(T ) ≥ β
(

1− 1

β · pmin · |S|

)
·R(S). (30b)

The proof of this lemma is provided in Appendix B.8.4. If we were allowed to choose items to be in
T fractionally, then condition (30b) would more closely mimic condition (30a) and the proof of this
lemma would be even more straightforward; as it is, condition (30b) must be slightly weaker since
we must sometimes leave the last item out of T in order to satisfy condition (30a).

This lemma supports the efficient search over rounded solutions which is conducted in LOWVALUEL+
1 .

Informally, it does this by proving that if some starting set satisfies certain properties, then either
there is a small subset with good objective value, or the search over rounded solutions will identify a
subset with good objective value.

Lemma 7 (Rounding Lemma). Consider the one-sided ρ = L+
1 loss. Consider any selection S ⊆ [n]

that simultaneously satisfies
U(S) ≥ 0 (31a)

µS ≤
3

2
M (31b)

λV (S) ≤ 1

15
R(S). (31c)

Then there exists some subset T ⊆ S that satisfies either

U(T ) ≥ 1

3
U(S) and |T | ≤ 24

pmin
, (32a)

or

U(T ) ≥ U(T ′) ≥ 1

24
U(S), (32b)

where T ′ denotes the rounded instance of the set T .

The proof of this lemma is provided in Appendix B.8.5.

This next lemma bounds the penalty of a subset with expected realized size smaller than M . It uses
the independence of the events Zi to apply tail bounds to the probability that the realized size of the
subset exceeds M . When applied to a downsampled subset derived from Lemma 6, it will show that
the penalty decreases exponentially while the reward decreases only linearly, yielding a subset which
is within a small factor of the starting set’s objective but is much less balanced.

Lemma 8 (Downsampling Penalty Bound). Consider the one-sided ρ = L+
1 loss. Consider any

selection S ⊆ [n] such that µS ≤M . Then for all k ∈ N+, the penalty term is bounded as

V (S) ≤ λ · k · e
−2(M−µS)2

|S| ·
(

1− e
−4(M−µS)k

|S|

)−2
. (33)

The proof of this lemma is provided in Appendix B.8.6. Informally, under this loss the penalty
increases linearly in the extent to which the realized size of S exceeds M , while the probability that
such a violation occurs decreases exponentially. The parameter k is the size of the buckets for which
the analysis of these competing influences is performed.

B.8.1 Proof of Lemma 3

Recall that we define τ := c
p2min

max
{

1, log
(

1
pmin

)
, log

(
λ
xmax

)}
in Line 2 of Algorithm 5. Let c0 be

the universal constant identified in Lemma 2. With pmin ≤ 1, it is straightforward to verify that there
exists a universal constant c, such that τ is bounded by

τ >
c0
pmin

log

(
4

pmin

)
, (34a)

τ ≥ 24

pmin
(34b)

τ ≥ 9

2

(
1

p2min

(
7 + log

(
1

pmin

)
+ 3 log

(
λ

xmax

)))
(34c)
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We use these bounds in the remaining proof.

In Line 2-5, we evaluate the objective for each selection S with |S| ≤ τ by brute-force. Hence, if
|S∗| ≤ τ , then the optimal selection is correctly identified. It remains to consider the case when
|S∗| > τ .

When |S∗| > τ , we apply the Mean Bound (Lemma 2) with ε = pmin
4 . We have either

|S∗| ≤ c0
pmin

log

(
4

pmin

)
(35a)

or

µ∗ ≤ 101

100
M. (35b)

The bound (34a) on τ contradicts (35a). Hence we have that (35b) holds, namely µ∗ ≤ 101
100M from.

We call a set S “balanced” if λV (S) > 1
15R(S), that is, the penalty term is a nontrivial portion of

the reward term. Otherwise, we call the set “unbalanced”. We consider the following two cases
separately depending on whether the set S∗ is balanced or not.

Case 1: |S∗| > τ and λV (S∗) ≤ 1
15R(S∗).

Note that the optimal selection always has a nonnegative objective for theL+
1 loss. That is, U(S∗) ≥ 0.

Hence, conditions (31) are satisfied. Applying the Rounding Lemma (Lemma 7), there exists some
T ⊆ S∗ such that

U(T ) ≥ 1

3
U(S∗) and |T | ≤ 24

pmin
, (36a)

or

U(T )
(i)
≥ U(T ′) ≥ 1

24
U(S∗), (36b)

In this first case (36a), by the bound (34b) on τ , we have

τ ≥ 24

pmin
≥ |T |.

Hence, the selection T is included in the brute-force search. We obtain a constant-factor approxima-
tion to U(S∗) in the brute-force search over small solutions (Line 5 of Algorithm 5).

In the second case (36b), if |T | ≤ τ , then again the selection T is included in the brute-force search
in Line 5 of Algorithm 5, and the brute-force identifies a solution which is at least as good and hence
a constant-factor approximation. If |T | > τ , then Line 6 to Line 12 search over all possible rounded
solutions, including T ′ which is a constant-factor approximation due to (36b). Hence, it identifies a
solution which is at least as good and hence a constant-factor approximation. identifies some T̂ for
which U(T̂ ) ≥ U(T̂ ′) ≥ U(T ′), which provides a constant-factor approximation to U(S∗).

Case 2: |S∗| > τ and λV (S∗) > 1
15R(S∗).

As an overview of this case, we appeal to the Downsampling Lemma (Lemma 6) with a small
downsampling ratio in order to obtain some T ⊆ S, and then argue that λV (T ) ≤ 1

15R(T ). Then we
obtain a constant-factor approximation to U(T ) by solving the rounded problem in Case 1.

Downsampling to an unbalanced set. Starting with the optimal selection S∗, we apply the Down-
sampling Lemma (Lemma 6) construction some T ⊆ S∗ such that this T is unbalanced but still
yields a large objective. Specifically, applying Lemma 6 with β = 1

2 , there exists some T ⊆ S∗ that
satisfies µT ≤ µ∗

2 and

R(T ) ≥
(

1

2
− 1

|S∗| · pmin

)
R(S∗). (37)

We assume that the selection T is sufficiently unbalanced as:

V (T ) ≤ R(T )

15
. (38)
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We now identify a constant-factor approximation by similar arguments as in Case 1. Specifically,
under the assumption (38), the objective of T satisfies

U(T )
(i)
≥ 14

15
R(T )

(ii)
≥ 14

15
·
(

1

2
− 1

|S∗| · pmin

)
R(S∗)

≥ 14

15
·
(

1

2
− 1

|S∗| · pmin

)
U(S∗), (39)

where step (i) is due to the assumption (38), and step (ii) is due to (37). By the assumption |S∗| ≥ τ
and the bound (34b) on τ , we have

|S∗| ≥ τ ≥ 24

pmin
. (40)

Applying (40) to inequality (39), the selection T is a constant-factor approximation to S∗ with
U(T ) ≥ 1

4U(S∗). Since T is sufficiently unbalanced by assumption (38), using the same arguments
as in Case 1 to the set T identifies a selection that is a constant-factor approximation to T , and
therefore to U(S∗). It now remains to prove (38).

Proving (38). Recall from (35b) that µ∗ ≤ 101
100M . Hence, we have µT ≤ µ∗

2 ≤ 101
200M < M .

Then we provide an upper bound on the variance term V (T ) by applying Lemma 8 to the set T .
Applying Lemma 8 with k = 1, we have

V (T ) ≤ λ · Exp
(−2(M − µT )2

|T |

)
︸ ︷︷ ︸

T1

·
(

1− e
−4(M−µT )

|T |

)−2
︸ ︷︷ ︸

T2

. (41)

We bound the two terms in (41) separately.

Recall from (35b) that µ∗ ≤ 101
100M . We then have

M − µT ≥
(

100

101
− 1

2

)
µ∗ >

1

3
µ∗. (42)

Using (42), we bound the term T1 as

T1 = Exp
(−2(M − µT )2

|T |

)
≤ Exp

(
−2(µ∗)2

9|T |

)
(i)
≤ Exp

(
−2

9
p2min · |S∗|

)
(ii)
≤ 1

720

p3minxmax

λ

where step (i) is true by plugging in µ∗ ≥ |S∗|·pmin, and |S∗| ≥ |T | due to T ⊆ S∗; step (ii) is true by
the fact that |S∗| ≥ τ with (34c). Let imax be the item with the highest value. WithM ≥ 1, the utility
for selecting the item with the highest value is U({imax}) = R({imax}) = pimaxxmax ≥ pminxmax.
Hence, the reward of the optimal selection is bounded by R(S∗) ≥ U(S∗) ≥ U({imax}) ≥ pminxmax.
Hence,

T1 ≤
p2min

45

R(S∗)

λ
, (43)

Using again M − µT ≥ 1
3µ
∗ ≥ 1

3 · |S∗| · pmin and |S∗| ≥ |T |, we bound the term T2 as

T2 =

(
1− e

−4(M−µT )

|T |

)−2
≤
(

1− e
−4µ∗
9|S∗|

)−2
≤ (1− e− 4

9pmin)−2 ≤ 16

p2min
, (44)

where step (i) is true because it can be shown by algebra that

1− e− 4
9p − 1

4
p ≥ 0 for every p ∈ [0, 1].

Plugging term T1 from (43) and term T2 from (44) back to (41) yields

V (T ) ≤ λ · 1

45
R(S∗)

(i)
≤ 1

15λ

(
1

2
− 1

|S∗| · pmin

)
R(S∗)

(ii)
≤ R(T )

15λ
, (45)

where step (i) is true by |S∗| ≥ τ ≥ 24
pmin

due to (34b), and step (ii) is true due to (37), proving (38).
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Runtime. We conclude by analyzing the runtime of LOWVALUEL+
1 .

The number of sets S such that |S| ≤ τ is bounded by |L| = 2τ ≤ nτ . For each S ∈ L, we compute
U(S) in O(τ2). By Lemma 5, the objective of each such set may be evaluated in O(τ2) operations,
and so the runtime of evaluating the objective for all of these small subsets is nO(τ).

We also compute the objective for the O(n|Q|) rounded sets identified in Algorithm 5, where
|Q| ≤

⌈
log2( 1

pmin
)
⌉

, which again by Lemma 5 can be done in O(n2) operations per set. This is

therefore nO(τ) also.

All of the other simple steps of LOWVALUEL+
1 are also polynomial in n or τ . Therefore, its overall

runtime is nO(τ).

B.8.2 Proof of Lemma 4

First, we observe that when n ≤ 36
p2min

, we find the optimal solution exactly by brute forcing over all
possible solutions S ⊆ [n] (Line 2 of Algorithm 6). Hence, in the rest of the proof we assume that
n ≥ 36

p2min
. We discuss the two cases of µ[n] ≤M (Line 6) and µ[n] > M (Line 4) separately.

We start by establishing a reformulation of the objective under L+
1 penalty which is convenient when

all items have value close to λ, and a pair of upper and lower bounds.

Bounding the objective. Recall that our objective is of the form U(S) = EZ [FS(Z)], where the
random vector Z ∈ {0, 1}n is the Bernoulli realization of each item, and FS(Z) is the realized utility:

FS(Z) :=
∑
i∈S

Zixi − λ
(∑
i∈S

Zi −M
)

+

=
∑
i∈S

Zixi − λ ·max

(
0,
∑
i∈S

Zi −M
)

= min

(∑
i∈S

Zixi,
∑
i∈S

Zixi − λ ·
(∑
i∈S

Zi −M
))

. (46)

Plugging in the assumption that (1− ε) · λ ≤ xi ≤ λ to (46), and recalling that |SZ | :=
∑
i∈S Zi,

we derive the upper bound

FS(Z) ≤ min

{
λ · |SZ |, λ ·M +

∑
i∈S

Zi(xi − λ)

}
FS(Z)

λ
≤ min {|SZ |, M} , (47a)

and the lower bound

FS(Z) ≥ min {(1− ε)λ · |SZ |, (1− ε)λ · |SZ | − λ(|SZ | −M)}
FS(Z)

λ
≥ min {(1− ε) · |SZ |, M − ε · |SZ |} . (47b)

We denote ε = pmin
4 for notational simplicity. As an overview, for the two cases to be presented below,

we apply the upper bound (47a) to the optimal set S∗, and the lower bound (47b) to our candidate
sets which we are proving are competitive with S∗.

Case 1: µ[n] > M and n ≥ 36
p2min

. Consider any arbitrary set S ⊆ [n] that satisfies (cf. Line 4 of
Algorithm 6):

M ≤
∑
i∈S

pi < M + 1. (48)
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Such a set S always exists because each pi ≤ 1. Furthermore, such a set in S can be found efficiently,
by greedily adding items to the set in an arbitrary order one-by-one until condition (48) is satisfied.
We denote by E the event that at most half of the Bernoulli random variables from S are 1. Formally,
E := {|SZ | ≤M/2}. By the multiplicative Chernoff bound,

P(E) = P
(
|SZ | ≤

M

2

) (i)
≤ Pr

(
|SZ | ≤

µS
2

)
≤ e−

µS
8

(ii)
≤ e−

M
8 , (49)

where steps (i) and (ii) are true by the construction of S in (48). We derive a lower bound on FS(Z)
depending on E . Conditional on E , the penalty term is 0 and we have FS(Z) ≥ 0. We now consider
the case conditional on E . By the assumption of µS < M + 1 from (48), we have the deterministic
relation |SZ | ≤ M+1

pmin
. Applying the lower bound in (47b), conditional on E ,

FS(Z) ≥ λ ·min

{
(1− ε) · M

2
, M − ε · |SZ |

}
≥ λ ·min

{
(1− ε)M

2
, M − ε(M + 1)

pmin

}
= λM ·min

{
1− ε

2
, 1− ε(M + 1)

M · pmin

}
(i)
= λM · 1− ε

2
where step (i) holds because by the assumption ε ≤ pmin

4 and M ≥ 1 (recall that M ∈ N+), we have
ε
pmin
≤ 1

4 and M+1
M ≤ 2. Therefore, we have 1 − ε(M+1)

M ·pmin
≥ 1

2 . Taking an expectation over Z, we
then have

U(S) = E[FS(Z)]

≥ 0 · Pr (E) +
(1− ε)λM

2
· Pr

(
E
)

(i)
≥ (1− ε)(1− e−M8 )

2
· λM

(ii)
≥ (1− ε)(1− e−M8 )

2
· U(S∗),

where step (i) is true by (49), and step (ii) is true by applying (47a) to the optimal selection S∗. Since
ε = pmin

4 ≤ 1
4 and M ≥ 1 by assumption, this guarantees a constant-factor approximation of S to the

optimal subset S∗.

Case 2: µ[n] ≤M and n ≥ 36
p2min

. In this case n is large enough to apply concentration bounds, so
we downsample the set [n] by a factor of two and discount the probability that |SZ | exceeds M . This
differs from Case 1 in that we cannot compare our objective against λ ·M . In particular, we consider
any arbitrary set S ⊆ [n] that satisfies (cf. Line 6 of Algorithm 6):

µ[n]

3
≤ µS ≤

µ[n]

2
≤ M

2
. (50)

We first show that such a set S always exists. Note that we have µ[n] ≥ npmin ≥ np2min ≥ 36 by
the assumption of n ≥ 36

p2min
. Hence, µ[n]

2 −
µ[n]

3 ≥ 1. Since each pi ≤ 1, a set S always exists.
Moreover, it can be found efficiently, by greedily adding items one-by-one in any arbitrary order until
condition (50) is satisfied. In what follows, we separately bound the values of U(S) and U(S∗). We
use an intermediate quantity of the expectation of the random variable |SZ | truncated at 2µS , defined
by

G(|SZ |) := E
[
|SZ | · 1{|SZ | ≤ 2µS}

]
.

Lower bound on U(S). Due to the condition (50) that µS ≤ M
2 , we have

G(|SZ |) := E
[
|SZ | · 1{|SZ | ≤ 2µS}

]
≤ E [|SZ | · 1{|SZ | ≤M}] . (51)
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We claim the deterministic relation

min

{
|SZ |,

M − ε|SZ |
(1− ε)

}
≥ |SZ | · 1{|SZ | ≤M}. (52)

To see (52), we observe that when |SZ | ≤M , the left-hand side has

1

1− ε (M − ε|SZ |) ≥M ≥ |SZ |. (53a)

When |SZ | > M , the right-hand side is zero, and the left-hand side is nonnegative, because

M ≥ 2µS ≥ 2pmin|S| ≥ 2pmin|SZ | ≥ ε|SZ |. (53b)

Plugging (52) to (51), we have

G(|SZ |) ≤ Emin

{
|SZ |,

M − ε|SZ |
1− ε

}
≤ 1

1− εEmin

{
|SZ |,

M − ε|SZ |
1− ε

}
=

1

(1− ε)2E
[

min {(1− ε) · |SZ |, M − ε · |SZ |}
]

(i)
≤ 1

(1− ε)2 ·
U(S)

λ
, (54)

where step (i) follows from (47b).

Upper bound on U(S∗). We decompose the expectation of |SZ | as

E|SZ | = G(|SZ |) + E [|SZ | · 1{|SZ | > 2µS}] ,
and hence

G(|SZ |) = µS − E
[
|SZ | · 1{|SZ | > 2µS}

]
(i)
≥ µS − E

[
|SZ | · 1{|SZ | > M}

]
= µS − E

[
M · 1{|SZ | > M}+ (|SZ | −M) · 1{|SZ | > M}

]
= µS −M · P

(
|SZ | > M

)
︸ ︷︷ ︸

T1

−E
[
(|SZ | −M)+

]
︸ ︷︷ ︸

T2

, (55)

where step (i) is true by the condition (50) that µS ≤ M
2 . We now analyze the two terms T1 and

T2 separately. We define δ such that M = (1 + δ)µS , and we have δ ≥ 1 by the construction of S
in (50).

For the term T1, we apply the multiplicative Chernoff bound. We have

P
(
|SZ | > M

)
≤ P

(
|SZ | > 2µS

)
≤ e−

µS
3 .

Then

T1 ≤ 2µS · e−
µS
3

(i)
≤ e

6
, (56)

where it can verified that step (i) holds for any µS ∈ R.

For the term T2, note that T2 = V (S)
λ , and by condition (50) we have µS ≤ M

2 ≤ M . Applying
Lemma 8 with k = d 1

pmin
e yields

T2 ≤
⌈

1

pmin

⌉
· Exp

(−2(M − µS)2

|S|

)
·
(

1− e
−4(M−µS)

|S|

⌈
1
pmin

⌉)−2
.
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Using the relations |S| ≤ µS
pmin

and M − µS ≥ µS , we have

T2 ≤
⌈

1

pmin

⌉
· Exp

( −2µ2
S

µS/pmin

)
·
(

1− e
−4µS
µS/pmin

⌈
1
pmin

⌉)−2
=

⌈
1

pmin

⌉
· Exp (−2pminµS) ·

(
1− e−4

)−2
≤
⌈

1

pmin

⌉
·
(
1− e−4

)−2
. (57)

Plugging term T1 from (56) and term T2 from (57) back to (55) yields

G(|SZ |) ≥ µS −
6

e
− 1.04 ·

⌈
1

pmin

⌉
.

Recall from the construction of S in (50) that µ[n]

3 ≤ µS ≤ µ[n]

2 . Furthermore, by the assumption
that n ≥ 36

p2min
, we have

µ[n] ≥ npmin ≥
36

pmin
≥ max

{
36, 18

⌈
1

pmin

⌉}
. (58)

Hence, we have

G(|SZ |) ≥
µ[n]

3
− µ[n]

12
− µ[µS ]

12
≥ µ[n]

6
.

Applying inequality (47a) with the fact that E[|SZ |] ≤ µ[n], we have

U(S∗) ≤ λ · µ[n]

and hence

G(|SZ |) ≥
µ[n]

6
≥ U(S∗)

6λ
. (59)

Finally, combining (54) and (59) yields

U(S)

U(S∗)
≥ λ(1− ε)2 ·G(|SZ |)

6λ ·G(|SZ |)
=

(1− ε)2
6

,

yielding a constant-factor approximation with ε = pmin
4 ≤ 1

4 .

Runtime. MEDIUMVALUEL+
1 (Algorithm 6) begins by brute forcing over small sets, and there

are 2n ≤ 236/p
2
min ≤ n36/p

2
min such sets. By Lemma 5, the objective value for each such set can be

evaluated in polynomial time, and so the runtime in this case is n3+36/p2min .

For the other two cases (Line 3 and Line 5), the chosen set can be identified in O(n). Therefore the
overall runtime of MEDIUMVALUEL+

1 is nO(1/p2min).

B.8.3 Proof of Lemma 5

Recall from (1) that the objective is computed as U([n]) = R([n])− λ · V ([n]), with

R([n]) :=
∑
i∈[n]

pixi

V ([n]) := E ρ

∑
i∈[n]

Zi, M

 .

It is clear that computing the reward term R may be done in O(n) operations. We now show that the
penalty term V can be computed in O(n2) operations.
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We start by rewriting the term V as:

V ([n]) =

n∑
k=0

P
( ∑
i∈[n]

Zi = k
)
· ρ(k,M) (60)

For any integer m ∈ {0, 1, . . . , n}, we define the (m+ 1)-dimensional vector {w(m)}mk=0 by

w
(m)
k := P

( ∑
i∈[m]

Zi = k
)
.

Since we assume that the relevant values of ρ are known at the outset, it suffices to show that the
probabilities involved in (60), or equivalently the (n + 1)-dimensional vector {w(n)

k }nk=0, can be
computed in O(n2) operations.

We iteratively compute the vector of {w(m)
k }mk=0 for m ∈ {0, 1, . . . , n}. First, we observe that

w(0) = 0. Then we observe the iterative relation that for each m ∈ [n] and k ∈ {0, . . . ,m}, we have

w
(m)
k = pm · w(m−1)

k−1 + (1− pm) · w(m−1)
k .

Hence, given the values of the m-dimensional vector {w(m−1)
k }m−1k=0 , computing each term w

(m)
k

takes c operations, where c is a universal constant. Hence, given the values of the m-dimensional
vector w(m−1)

· , it takes c(m+1) operations to compute the (m+1)-dimensional vector w(m)
· . Hence,

the number of operations for computing the vector w(n)
· , by iteratively taking m ∈ {1, 2, . . . , n}, is

c

n∑
m=1

(m+ 1) = O(n2),

completing the proof.

B.8.4 Proof of Lemma 6

We re-index the items {pi, xi}i∈[n] in decreasing order of the value xi, such that x1 ≥ . . . ≥ xn.

First, note that if p1 > β · µS , then T = ∅ satisfies the lemma. Clearly for this T (30a) holds. Then
because R(S) ≥ 0 we also have

0 > β − pi
µS
≥ β − 1

µS
≥ β

(
1− 1

β · pmin|S|

)
,

and so multiplying by R(S) yields

R(T ) = 0 > β

(
1− 1

β · pmin|S|

)
·R(S),

satisfying (30b).

Otherwise we assume that p1 ≤ β · µS . We construct a set T be selecting as many items as possible
in the decreasing order of the value xi, subject to the constraint that (30a) is satisfied. Formally, we
consider the set T := {1, . . . , t}, where

t := max

{
m ∈ [n] :

m∑
i=1

pi ≤ β · µS
}
.

By the definition of t, the set T satisfies (30a). It remains to show that the set T also satisfies (30b).

If β = 1 then the resulting T = S clearly suffices. Otherwise β < 1, and so we have t < n (we
assume that each item has strictly positive probability without loss of generality. By the definition of
t, we have

∑t+1
i=1 pi > β · µS . Equivalently,

µT > β · µS − pt+1. (61)
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In what follows, we use the following inequality that holds for any for {ai}i∈[n] and {bi}i∈[n] with
bi ≥ 0:

min
i

ai
bi
≤
∑
i ai∑
i bi
≤ max

i

ai
bi
. (62)

To see why this is true, note that for any {ri}i∈[n] and {wi}i∈[n], with wi ≥ 0 and
∑
i wi = 1, we

have

min
i
ri ≤

∑
i

wiri ≤ max
i
ri.

We recover (62) by setting ri = ai
bi

and wi = bi∑
i bi

.

Applying (62) yields

R(T )

µT
=

∑
i∈T pixi∑
i∈T pi

(i)
≥ xt

(ii)
≥
∑
i∈S\T pixi∑
i∈S\T pi

=
R(S \ T )

µS − µT
, (63)

where steps (i) and (ii) hold because the items are sorted in the decreasing order of xi. Plugging
R(S) = R(T ) +R(S \ T ) into (63) and rearranging yields

R(T ) ≥ µT
µS

R(S)

(i)
≥
(
β − 1

µS

)
R(S)

(ii)
≥
(
β − 1

pmin · |S|

)
R(S),

where step (i) is true by (61), and step (ii) follows again from the fact that µS ≥ pmin|S|. Hence, the
set T satisfies (30b), completing the proof.

B.8.5 Proof of Lemma 7

To begin, we partition S into “high,” “bucketable,” and “leftover” items according to their pi so that
S = H tB t L in Algorithm 7.

Algorithm 7 PARTITION

Require: S ∈ [n], p ∈ [0, 1]n

Ensure: A partition S = H tB t L with B = D1 tD2 tD3

1: H ← {i ∈ S : pi ≥ 1
4}

2: L← {}
3: D1, D2, D3 ← {}
4: for ` = 2, . . . ,

⌈
log2( 1

pmin
)
⌉
− 1 do

5: B` ← {i ∈ S : 2−(`+1) ≤ pi < 2−`}
6: for j = 0, . . . ,

⌊
|B`|
3

⌋
− 1 do

7: B`j ← {b`3j+1, b
`
3j+2, b

`
3j+3}

8: D1 ← D1 ∪ {b`3j+1}
9: D2 ← D2 ∪ {b`3j+2}

10: D3 ← D3 ∪ {b`3j+3}
11: L← L ∪ {b⌊̀

3
|B`|

3

⌋
+1
, . . . , b`|B`|}

12: return S = H tB t L with B = D1 tD2 tD3

Algorithm 7 first let H = {i ∈ S : pi ≥ 1
4}, the high-probability items. Next consider the collection

of buckets B` = {i ∈ S \H : 2−(`+1) ≤ pi < 2−`}. Note that the number of buckets is at most
log2( 1

pmin
). Form the contents of each B` into groups of three, {B`j}j (that is, the set

∣∣B`j ∣∣ = 3 for
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each j. If the number of items in B` is not divisible by 3, we leave them to L). Let B = ∪` ∪j B`j ,
and let L be the leftover L := S \ (H ∪B) which do not belong to groups of three.

Next note that R(H) + R(B) + R(L) = R(S) and that V (H), V (B), V (L) ≤ V (S). We handle
the cases when each of these is large separately.

Case 1: R(H) ≥ R(S)
3 . If |H| ≤ 24

pmin
then the set H satisfies (32a). We now consider the case

|H| > 24
pmin

, and construct a set T ⊆ H that satisfies (32b).

Applying Lemma 6 with k = 6 yields a set T ⊆ H such that

µT ≤
1

6
µH (64a)

and

R(T )
(i)
≥ 1

6
·
(

1− 6

pmin · |H|

)
·R(H)

(ii)
≥ 1

8
R(H), (64b)

where step (i) follows from Lemma 6 and step (ii) is true by the assumption that |H| > 24
pmin

. By the
definition of H , we have pi ≥ 1/4 for each i ∈ H , and hence

|T | ≤ 4µT
(i)
≤ 2

3
µH ≤

2

3
µS

(ii)
≤ M,

where step (i) is true by (64a), and step (ii) is true by the assumption that µS ≤ 3
2M . Hence, we have

V (T ) = V (T ′) = 0. By the rounding procedure, we have R(T ′) = R(T ). Therefore,

U(T ′) = U(T ) = R(T )
(i)
≥ 1

8
R(H)

(ii)
≥ 1

24
R(S) ≥ 1

24
U(S), (65)

where step (i) is due to (64b) and step (ii) is true by the assumption of this case. Hence, the set T
satisfies the condition (32b).

Case 2: R(L) ≥ R(S)
3 . Recall that the number of buckets is at most log2( 1

pmin
). Since there are at

most two elements in L from each bucket, the number of items in L is at most |L| ≤ 2 log2( 1
pmin

) <
2
pmin

, satisfying condition (32a).

Case 3: R(B) ≥ R(S)
3 . Further partition B into three equal-sized sets B = D1 t D2 t D3

by arbitrarily assigning each member of each bucket-group B`j to a distinct D`. Without loss of
generality, assume that D1 has the maximum reward among these three sets, namely R(D1) ≥
max{R(D2), R(D3)}, so that R(D1) ≥ R(B)

3 ≥ R(S)
9 .

In what follows, we first show that the set D1 satisfies (32b) under the assumption
V (D′1) ≤ V (S). (66)

Then we show that assumption (66) always holds.

Proving (32b) for set D1. For the reward term, we have

R(D′1) = R(D1) ≥ 1

9
R(S).

For the penalty term, recall that we assume λ · V (S) ≤ 1
15R(S). Combining the reward term and the

penalty term, we have
U(D′1) = R(D′1)− λ · V (D′1)

(i)
≥ 1

9
R(S)− λ · V (S)

≥ 1

9
R(S)− 1

15
R(S)

≥ 1

24
U(S),

where step (i) uses assumption (66). Hence, the set D′1 satisfies condition (32b). It remains to prove
assumption (66).
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Proving (66). For any sets S1 and S2, we say that S1 stochastically dominates S2, if the random
variable

∑
i∈S1

Zi stochastically dominates the random variable
∑
i∈S2

Zi. Namely, for any t ∈ R,
we have

P
(∑
i∈S1

Zi ≥ t
)
≥ P

(∑
i∈S2

Zi ≥ t
)

Since the one-sided loss L+
1 is nondecreasing, it can be verified that if S1 stochastically dominates

S2, then V (S1) ≥ V (S2).

By construction we have B ⊆ S, and hence S stochastically dominates B. If B stochastically
dominates D′1, then we have

V (D′1) ≤ V (B) ≤ V (S),

proving (66). It remains to prove that B stochastically dominates D′1.

For each bucket group Bz = B`j , let Bz = {p1, p2, p3} with p1 ∈ D1. Then let the associated
random variables be

Xz := Ber(q1) and Yz := Ber(p1) + Ber(p2) + Ber(p3),

where qi is obtained by rounding pi up to the nearest power of two. Note that
∑
i∈D′1

Z ′i =
∑
zXz ,

and
∑
i∈B Zi =

∑
z Yz . Moreover, {Xz}z are independent, and {Yz}z are independent. It suffices

to show the stochastic dominance of Yz over Xz for each bucket group bz , and then the stochastic
dominance of B over D′1 follows.

To show the stochastic dominance of Yz over Xz , we consider the probabilities

P(Xz = 0) = 1− q1
P(Yz = 0) = (1− p1)(1− p2)(1− p3),

and show that P(Xz = 0) ≥ P(Yz = 0). By the construction of each bucket group B`, we have
p1, p2, p3 ∈ [2−(l+1), 2−l) and hence q1 = 2−l. Consequently, we have p1, p2, p3 ≥ q1

2 . We have

P(Xz = 0) = 1− q1
(i)
≥
(

1− q1
2

)3
≥ (1− p1)(1− p2)(1− p3) = P(Yz = 0).

where it can be verified that step (i) holds for every q1 ∈ [0, 14 ]. Hence, Yz stochastically dominates
Xz , completing the proof of (66).

B.8.6 Proof of Lemma 8

For notational simplicity, we assume λ = 1 without loss of generality, and denote the random variable
T :=

∑
i∈S Zi. We write the penalty term V (S) as

V (S) = E (T −M)+

=

∞∑
i=1

i · P
(
T = M + i

)
, (67)

We consider the probability that the value of T lies in each interval (M + ik,M + (i+ 1)k], for each
integer i ≥ 0. We have

V (S) ≤
∞∑
i=0

(i+ 1)k · P
(
M + ik < T ≤M + (i+ 1)k

)
≤ k ·

∞∑
i=0

(i+ 1) · P
(
T > M + ik

)
.
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We bound each term P
(
T > M + ik

)
by Hoeffding’s inequality. We have E[T ] = µS ≤ M by

assumption. Hence, by Hoeffding’s inequality,

P
(
T > M + ik

)
≤ Exp

(
−2(M + ik − µS)2

|S|

)
= Exp

(
−2(M − µS)2

|S|

)
· Exp

(
−4(M − µS)ik + 2(ik)2

|S|

)
≤ Exp

(
−2(M − µS)2

|S|

)
· Exp

(
−4(M − µS)ik

|S|

)
. (68)

Plugging (68) into (67) yields

V (S) ≤ k · Exp
(
−2(M − µS)2

|S|

)
·
∞∑
i=0

(i+ 1) · Exp
(
−4(M − µS)ik

|S|

)

≤ k · Exp
(
−2(M − µS)2

|S|

)
·
∞∑
i=0

(i+ 1) ·
(
e−

4(M−µS)k

|S|

)i
(i)
= k · Exp

(
−2(M − µS)2

|S|

)
·
(

1− e
−4(M−µS)k

|S|

)−2
,

where step (i) uses the fact that for any 0 < x < 1, we have
∞∑
i=0

(i+ 1)xi =

∞∑
t=0

∞∑
i=t

xi =

∞∑
i=0

xt

1− x =
1

1− x
∞∑
i=0

xt =
1

(1− x)2
.

B.9 Proof of Theorem 5

We fix any arbitrary problem instance (x, p, λ,M) for the L1 loss, and problem instance (x′, p, λ′,M)
for the L+

1 loss, with

x′i := xi − λ
λ′ := 2λ.

We fix any arbitrary S ⊆ [n], and demonstrate the desired equality

UL1
(S) = UL+

1
(S′)− λ ·M. (69)

by induction on the number of elements in S. First, we consider |S| = 0, or equivalently S = ∅.
Then it can be verified that

UL1
(S) = −λM

UL+
1

(S′) = 0,

satisfying (69).

Next suppose that (69) holds for all set S with |S| ≤ k. We consider the marginal change to the
objective when adding any item j 6∈ S to the set S. Let Sj = for some S with |S| < j. The marginal
change to the objective with the L1 loss is

UL1
(S ∪ {j})− UL1

(S) = pjxj + λ · EZS∪{j}

[∣∣∣∣∣∑
i∈S

Zi + Zj −M
∣∣∣∣∣−
∣∣∣∣∣∑
i∈S

Zi −M
∣∣∣∣∣
]

= pjxj + λ · pj · EZS

[∣∣∣∣∣∑
i∈S

Zi + 1−M
∣∣∣∣∣−
∣∣∣∣∣∑
i∈S

Zi −M
∣∣∣∣∣
]

︸ ︷︷ ︸
T

(70)
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Note that the term T satisfies

T =

{
1 if

∑
i∈S Zi ≥M

−1 if
∑
i∈S Zi < M.

(71)

Using the fact (71) in (70), we have

UL1
(S ∪ {j})− UL1

(S) = pjxj + λ · pj
[
P
(∑
i∈S

Zi ≥M
)
− P

(∑
i∈S

Zi < M
)]

= pjxj + λ · pj
[

2 · P
(∑
i∈S

Zi ≥M
)
− 1

]
= pj(xj − λ) + 2λpj · P

(∑
i∈S

Zi ≥M
)

= pjx
′
j + λ′pj · P

(∑
i∈S

Zi ≥M
)
. (72)

Using a similar analysis, the marginal change to the objective with the L+
1 loss is

UL+
1

(S ∪ {j})− UL+
1

(S) = pjx
′
j + λ′ · EZS∪{j}

[(∑
i∈S

Zi + Zj −M
)
+
−
(∑
i∈S

Zi −M
)
+

]
= pjx

′
j + λ′pj · P

(∑
i∈S

Zi ≥M
)
. (73)

Combining (72) and (73) demonstrates that the marginal change is equal for the L1 and L+
1 losses,

under their respective instances. Therefore, applying the induction hypothesis that (69) holds for all
S with |S| ≤ k completes the induction step.
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