Recruitment Strategies that Take a Chance

Gregory Kehne ${ }^{\dagger}$, Ariel Procaccia ${ }^{\dagger}$, and Jingyan Wang*

Our Setting

We take the perspective of a hiring algorithm in a batch setting
Each candidate $i \in[n]$ has a known probability and value $\left(x_{i}, p_{i}\right)$

Hiring algorithm chooses some $S \subseteq[n]$ to make offers to:

Candidates independently accept with probabilities p_{i}, algorithm receives reward

Our goal: How to choose subsets $S \subseteq[n]$?

Target/Constraint

There is some target number of acceptances M

$(3,0.8)$

$(2,0.9)$

$(2,0.9)$

$M=3$
$(1,0.5)$

Hiring algorithm chooses $\{1,2,3\} \subseteq[n]$ to make offers to:

$S_{Z}=2$

Candidates independently accept with probabilities p_{i}, algorithm receives reward, minus some penalty for missing its target.

The Penalty and Objective

What form does this penalty for missing M take?

$$
M=3
$$

A number of natural choices.
Here are two: linear one-sided loss (L_{1}^{+}) and MSE loss (L_{2})

$$
U(S)=\sum_{i \in S} x_{i} p_{i}-\lambda \cdot \mathbb{E}_{Z}\left[\rho\left(\left|S_{Z}\right|, M\right)\right]
$$

λ is a regularizing term: reflects how important the target is relative to the candidate values.

L_{2} Loss

For mean squared error (MSE) loss, for a given subset $S \subseteq[n]$,

$U(S)=\sum_{i \in S} x_{i} p_{i}-\lambda \cdot \mathbb{E}_{Z}\left[\left(\left|S_{Z}\right|-M\right)^{2}\right]$

Theorem: There is an FPTAS which finds some $S \subseteq[n]$ within ϵ of the optimal solution, in $\operatorname{poly}\left(n, M, \lambda, \epsilon^{-1}\right)$

L_{1}^{+}Loss

For one-sided linear loss, for a given subset
$S \subseteq[n]$,

$U(S)=\sum_{i \in S} x_{i} p_{i}-\lambda \cdot \mathbb{E}_{Z}\left[\left(\left|S_{Z}\right|-M\right)_{+}\right]$

Greedy Algorithms

$$
p_{\min }=\min _{i} p_{i}
$$

xGreedy : candidates i are added to S in the order of decreasing value x_{i}
xpGreedy: candidates i are added to S in the order of decreasing expected value $x_{i} p_{i}$

Theorem: xpGreedy is a $\Theta\left(p_{\text {min }}\right)$ approximation, and xGreed is an $\Omega\left(p_{\text {min }}^{2}\right)$ and $O\left(p_{\text {min }}\right)$ approximation to this objective

L_{1}^{+}Loss: a new algorithm

$U(S)=\sum_{i \in S} x_{i} p_{i}-\lambda \cdot \mathbb{E}_{Z}\left[\left(\left|S_{Z}\right|-M\right)_{+}\right]$

Approach:

Divide [n] into three groups, depending on value x_{i} relative to penalty weight λ
$i: x_{i} \leq \lambda \cdot\left(1-p_{\text {min }} / 4\right)$

$$
i: \lambda \cdot\left(1-p_{\min } / 4\right) \leq x_{i} \leq \lambda
$$

$$
i: x_{i} \geq \lambda
$$

Compute a constant-factor approximation on each group separately

Theorem: This is a constant-factor approximation to this objective in $O\left(n^{f\left(p_{\min }, \lambda / x_{\max }\right)}\right)$, where $f\left(p_{\min }, \lambda / x_{\max }\right)=O\left(p_{\min }^{-2} \cdot \max \left(1, \log p_{\min }^{-1}, \log \lambda / x_{\max }\right)\right)$

Experiments

How does our algorithm perform against the greedy algorithms? $(n=50)$

Varying correlation between
x_{i} and p_{i}

Increasing penalty regularizer
λ relative to the x_{i}

Experiments (contd.)

How do our algorithm and the greedy algorithms perform against OPT? $(n=20)$

Varying correlation between
x_{i} and p_{i}

Increasing penalty regularizer
λ relative to the x_{i}

Thank you!

Please contact the authors* with any questions, or ask in person at the poster session!

