Recruitment Strategies that Take a Chance

Gregory Kehne[†], Ariel Procaccia[†], and Jingyan Wang^{*}

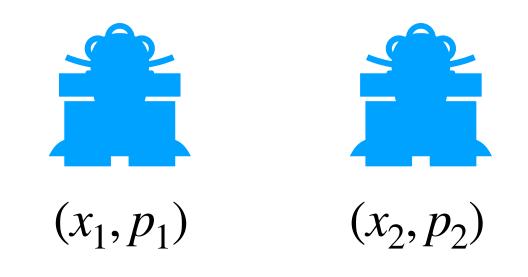
† Harvard University

* Georgia Tech

Our Setting

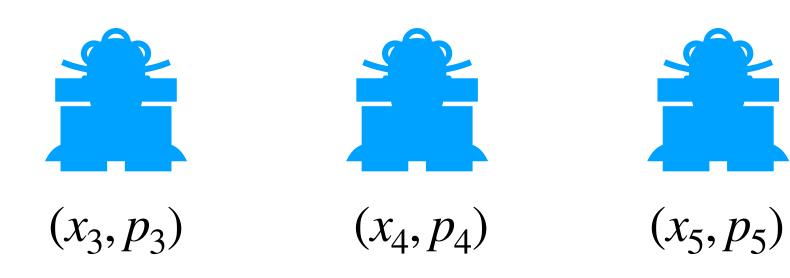
We take the perspective of a hiring algorithm in a batch setting

Each candidate $i \in [n]$ has a known probability and value (x_i, p_i)



Hiring algorithm chooses some $S \subseteq [n]$ to make offers to:

Our goal: How to choose subsets $S \subseteq$



Candidates independently accept with probabilities p_i , algorithm receives reward

Target/Constraint

There is some target number of acceptances M

Hiring algorithm chooses $\{1,2,3\} \subseteq [n]$ to make offers to:

Candidates independently accept with probabilities p_i , algorithm receives reward,

minus some penalty for missing its target.

M = 3

The Penalty and Objective

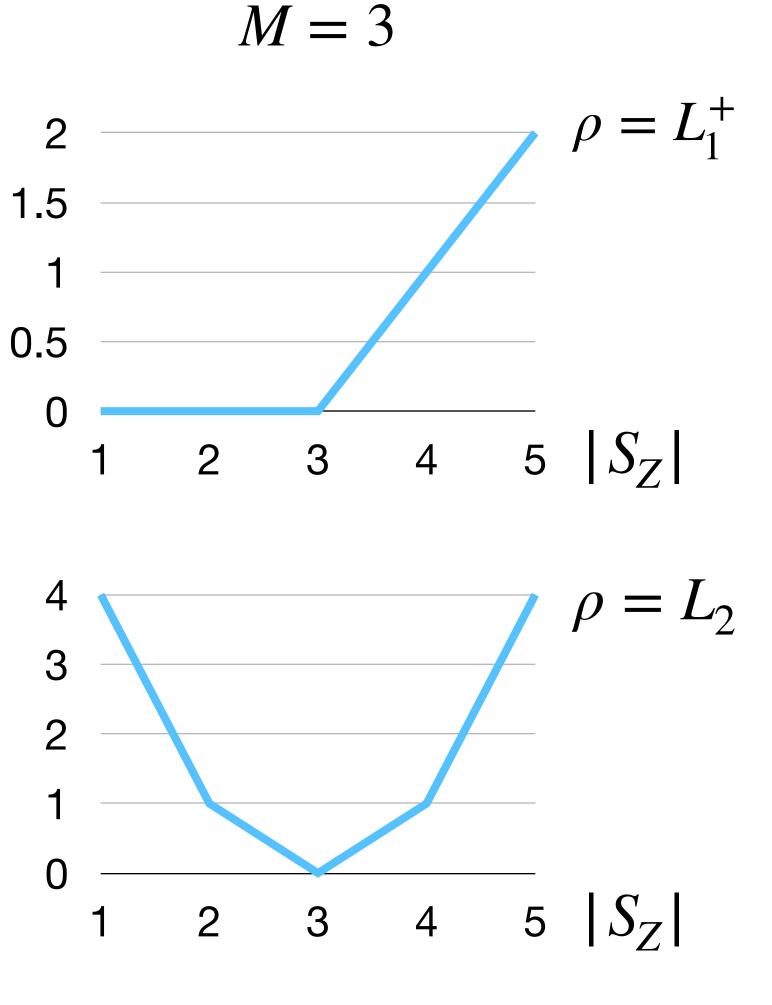
What form does this penalty for missing M take?

A number of natural choices.

Here are two: linear one-sided loss (L_1^+) and MSE loss (L_2)

$$U(S) = \sum_{i \in S} x_i p_i - \lambda \cdot \mathbb{E}_Z \left[\rho(|S_Z|, M) \right]$$

 λ is a regularizing term: reflects how important the target is relative to the candidate values.

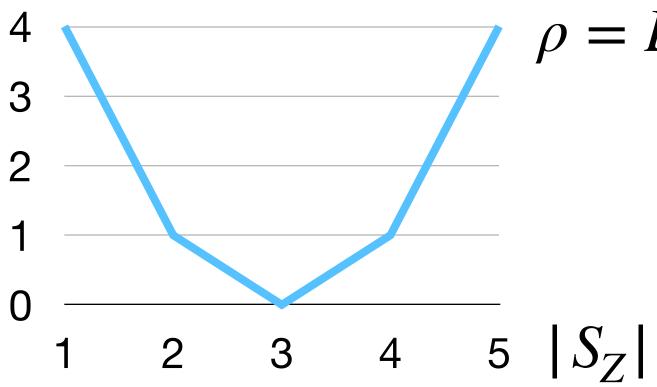


 L_2 Loss

For mean squared error (MSE) loss, for a given subset $S \subseteq [n]$,

$$U(S) = \sum_{i \in S} x_i p_i - \lambda \cdot \mathbb{E}_Z \left[(|S_Z| - M)^2 \right]$$

Theorem: There is an FPTAS which finds some $S \subseteq [n]$ within ϵ of the optimal solution, in $poly(n, M, \lambda, \epsilon^{-1})$



L_1^+ Loss

For one-sided linear loss, for a given subset $S \subseteq [n]$,

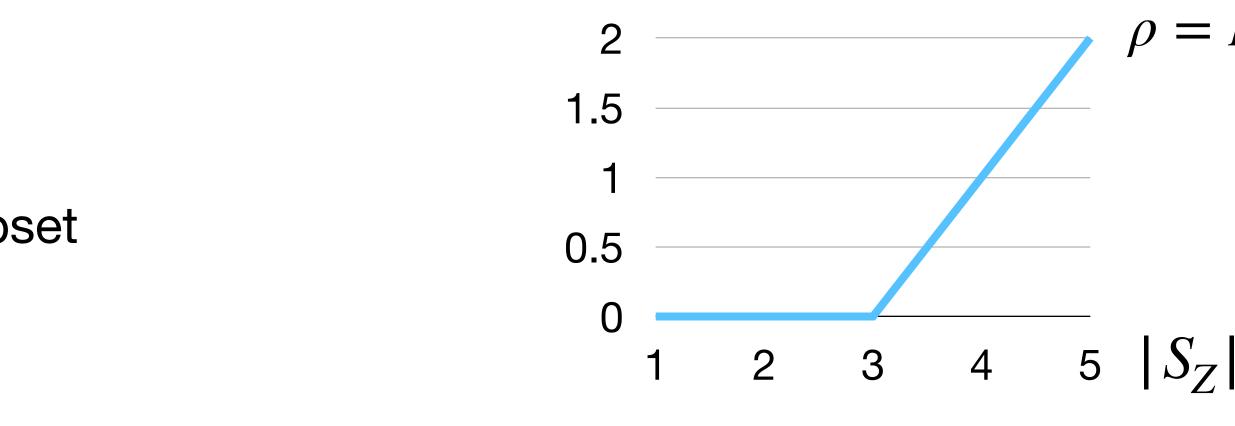
$$U(S) = \sum_{i \in S} x_i p_i - \lambda \cdot \mathbb{E}_Z \left[(|S_Z| - M)_+ \right]$$

Greedy Algorithms

xGreedy: candidates *i* are added to S in the order of decreasing value x_i

xpGreedy: candidates *i* are added to S in the order of decreasing expected value $x_i p_i$

Theorem: xpGreedy is a $\Theta(p_{min})$ approximation, and xGreedy is an $\Omega(p_{min}^2)$ and $O(p_{min})$ approximation to this objective



$$p_{min} = \min_{i} p_i$$

$$L_1^+$$
 Loss: a new algorithm
 $U(S) = \sum_{i \in S} x_i p_i - \lambda \cdot \mathbb{E}_Z [(|S_Z| - M)_+$

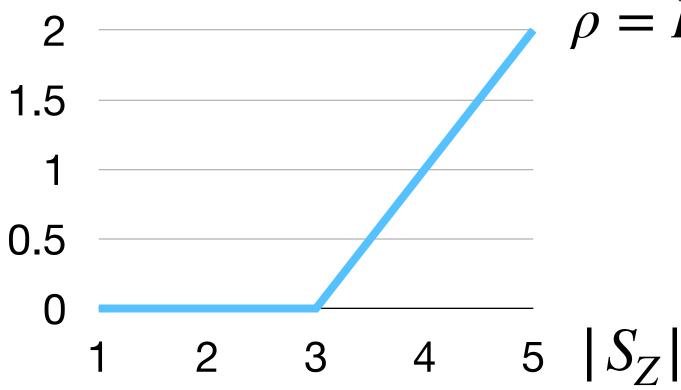
Approach:

Divide [n] into three groups, depending on value x_i relative to penalty weight λ

$$i: x_i \le \lambda \cdot (1 - p_{min}/4) \qquad i: \lambda \cdot (1 - p_{min}/4) \le x_i \le \lambda$$

Compute a constant-factor approximation on each group separately

Theorem: This is a constant-factor approximation to this objective in $O(n^{f(p_{min}, \lambda/x_{max})})$, where $f(p_{min}, \lambda/x_{max}) = O\left(p_{min}^{-2} \cdot \max(1, \log p_{min}^{-1}, \log \lambda/x_{max})\right)$

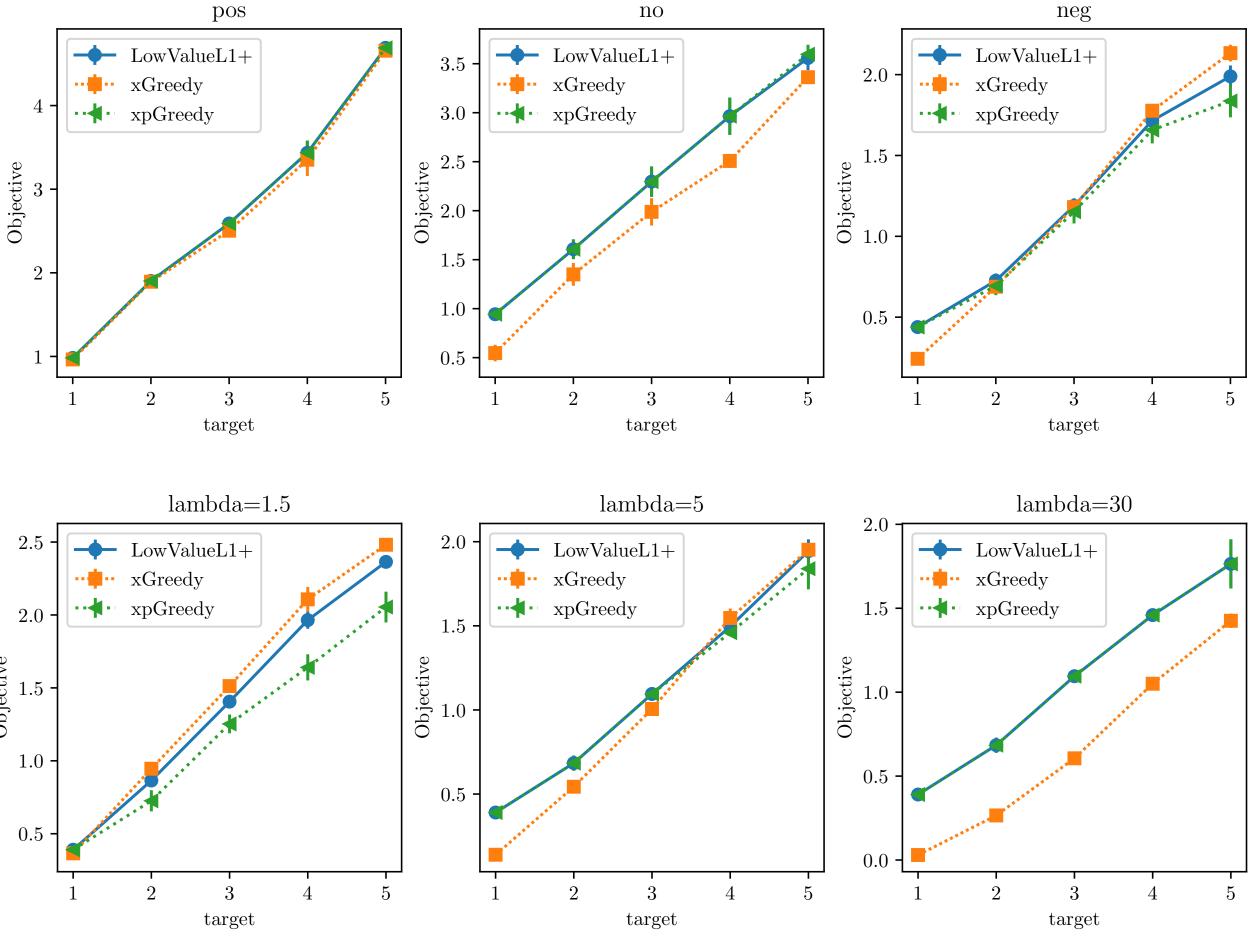


 $i: x_i \geq \lambda$

Experiments

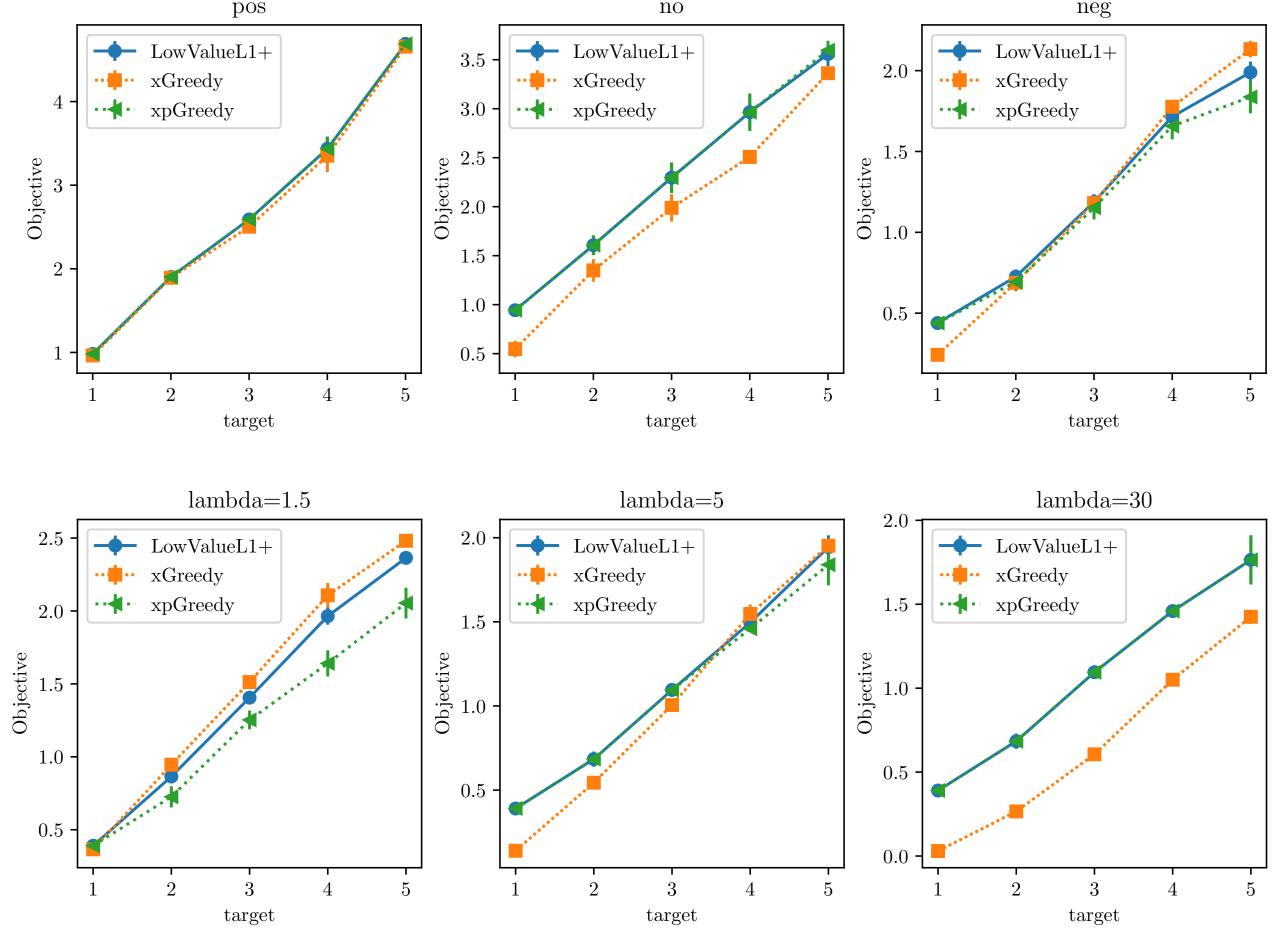
How does our algorithm perform against the greedy algorithms? (n = 50)

Varying correlation between x_i and p_i



Increasing penalty regularizer

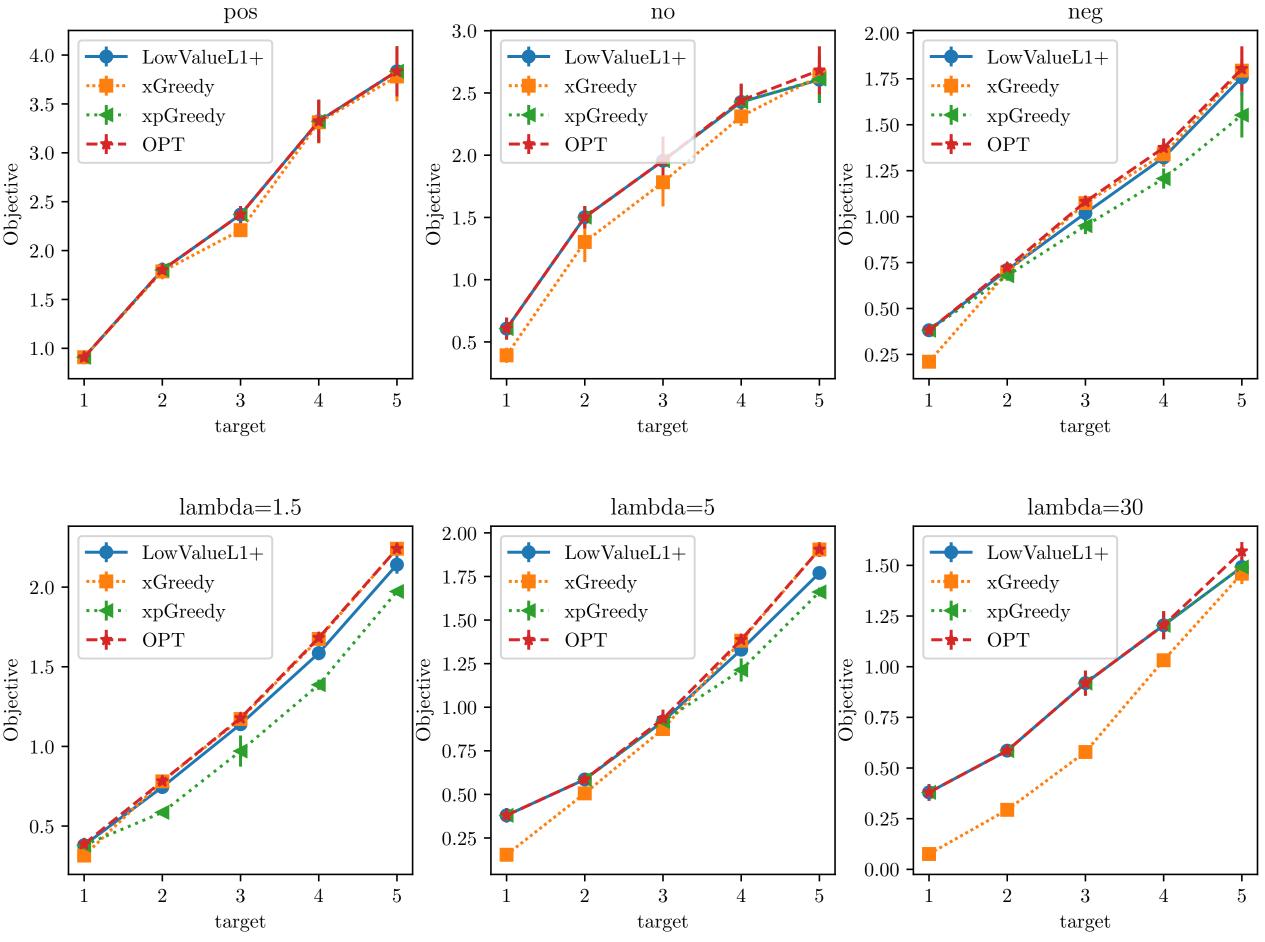
 λ relative to the x_i



Experiments (contd.)

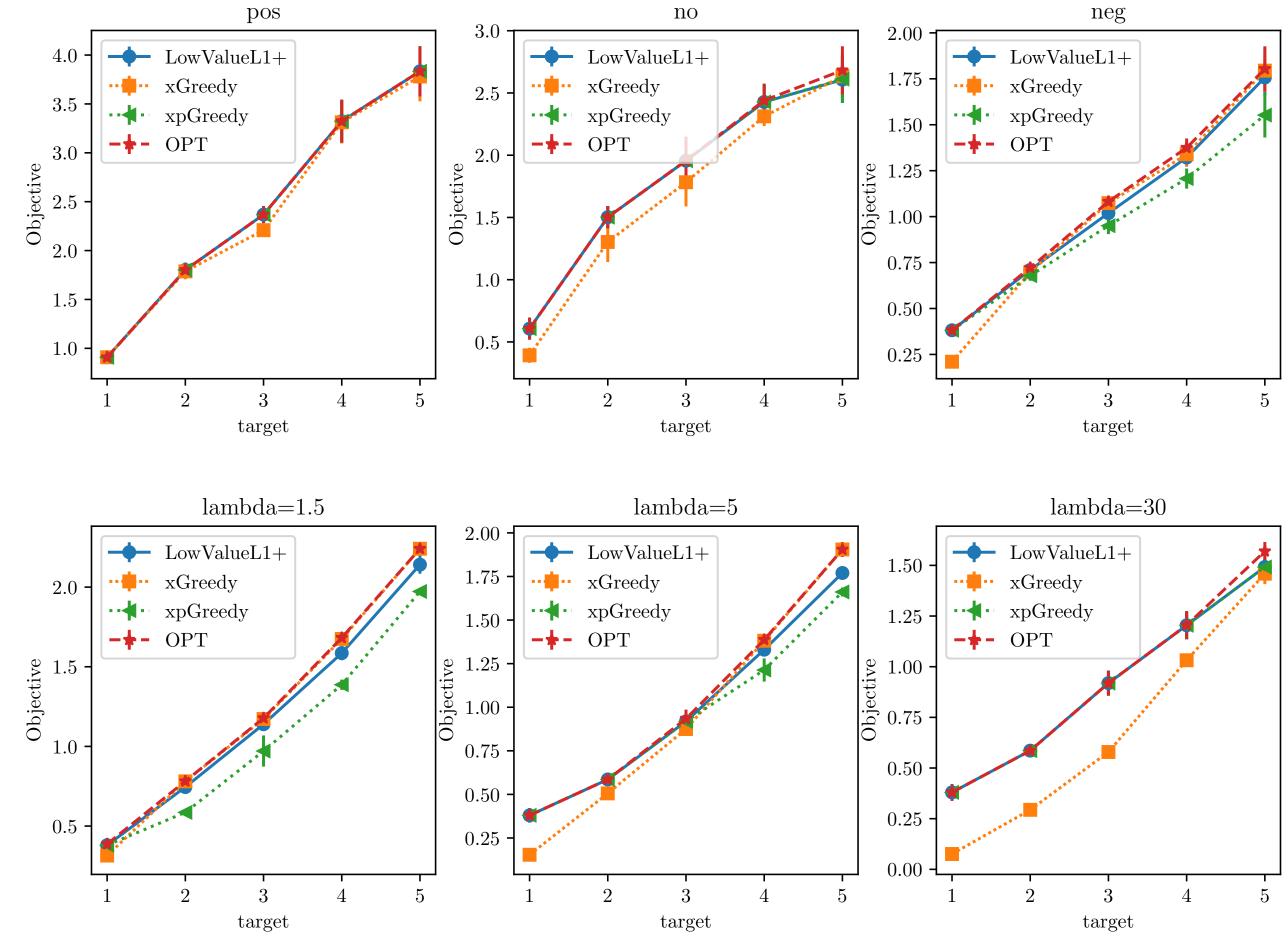
How do our algorithm and the greedy algorithms perform against OPT? (n = 20)

Varying correlation between x_i and p_i



Increasing penalty regularizer

 λ relative to the x_i



Thank you!

Please contact the authors* with any questions,

or ask in person at the poster session!

*gkehne@g.harvard.edu

