Is Sortition Both Representative and Fair?

Soroush Ebadian, Gregory Kehne, Evi Micha, Ariel D. Procaccia, and Nisarg Shah

What is Sortition?

underlying population/pool [n]

- Democratic paradigm which randomly selects a panel (jury) from a population
- Origins in ancient Athens, used today e.g. in constructing *citizens' assemblies*
- Randomness guarantees that all individuals have some chance of being selected for P, while satisfying a collection of constraints which ensure that the chosen panel represents the underlying population (see Flanigan et al.)

Main Question:

How do fairness and representation trade off ...

when representativeness within the population has some structure, and perfect representation is unattainable?

Sortition in a Metric Setting

- Measure the fairness of a sortition algorithm \mathscr{A} by the minimum probability of any individual's selection
- Encode representation in a distance metric between individuals
- Representation distance from i to a panel P is the distance from i to their q^{th} closest representative in P, given by $d(i, rank_i(P)_q)$ (see Caragiannis et al.)
- Representation of a sortition algorithm \mathscr{A} is the fraction of the best-possible representation it attains (in expectation), in the worst case over all metrics

Our Results

Theoretical upper and lower bounds on the best achievable tradeoff between representation and fairness.

OPT and **OPT** Approximation have $repr_q(OPT) = \Omega(1)$ but $fair_a(OPT) = 0.$

RandomReplace satisfies $fair_q(RR) \ge q/k$ and $repr_a(RR) = \Omega(1/q).$

For $q \leq k/2$, if $fair_q(\mathscr{A}) \geq q/k + \epsilon$ then $repr_q(\mathcal{A}) = 0$.

For $q \leq k/2$, if $fair_q(\mathscr{A}) > q/k$ then $repr_q(\mathscr{A}) \leq k/q^2$.

RandomSelection satisfies $repr_q(RS) = \Omega$ which is tight if q > k/2 and $fair_q(\mathscr{A}) = 1.$

 $c_a(i, P) = d(i, rank_i(P)_a)$

$$W_q(P) = \sum_{i=1}^{n} c_q(i, P)$$

ALGORITHM 1: *OPT* **Input:** metric d on $[n], k \leq n$ **Output:** optimal panel $P \subseteq [n]$ 1: $P^* \leftarrow \arg\min_{P \in \binom{[n]}{k}} \sum_{i \in [n]} c_q(i, P)$ 2: return P^* **ALGORITHM 2:** *OPT* Approximation **Input:** metric d on [n], $k \le n, q \le k$, algo **KMEDIANSPROXY Output:** panel $P \subseteq [n]$ an approx to OPT1: $k' \leftarrow \lfloor k/q \rfloor, P \leftarrow \emptyset, S \leftarrow [n]$ 2: $Q \leftarrow KMEDIANSPROXY(d, k')$ 3: for $c \in Q$ do $P_c \leftarrow \text{the } q \text{ closest } i \in S \text{ to } c$ $P \leftarrow P \cup P_c, S \leftarrow S \setminus P_c$ 5: 6: **end for** 7: augment P arbitrarily until |P| = k8: return P

algorithm due to Kumar and Raichel

ALGORITHM 3: RANDOMREPLACE_{*a*}

Input: metric d on [n], $k \le n$, panel P with $\operatorname{repr}_{a}(P) = \alpha$

Output: P with $\leq q$ random replacements 1: Pick $S \in S_q$ uniformly at random

- 2: Set $P_S \leftarrow P$ and $\overline{S} \leftarrow S \setminus P$
- 3: for $i \in \overline{S}$ do
- Pick an arbitrary $j_i \in top_q(i, P) \setminus S$ 4:
- $P_S \leftarrow P_S \cup \{i\} \setminus \{j_i\}$ 5:
- 6: **end for**
- 7: return P_S

ALGORITHM 4: RANDOMSELECTION

- Input: $[n], k \leq n$
- **Output:** u.a.r. panel $P \subseteq [n]$ 1: Sample $P \sim {\binom{[n]}{k}}$ uniformly at random
- 2: return P

fairness:
$$fairness_q(\mathscr{A}) = \inf_d \frac{\min_{i \in [n]} \Pr[i \in \mathscr{A}(d)]}{k/n}$$

representation: $repr_q(\mathscr{A}) = \inf_d \frac{\min_{P'} SC_q(P', d)}{\mathbb{E}[SC_q(\mathscr{A}(d)]]}$

Harvard John A. Paulson School of Engineering and Applied Sciences

Experimental Findings

Testing the performance of OPT Approximation and RandomReplace_a on synthetic representation metrics

- Constructed collections of randomized representation metrics using the UCI Adult dataset (based on 1994 US Census data) and the European Social Survey from 2018.
- Experiments show a discontinuity at q = k/2, reflected in the theory

Representativeness of RandomReplace for increasing values of q, as compared to OPT Approximation.

An analysis of the Adult dataset for fixed values of q and increasing panel sizes k(above).

A benchmarking of *OPT* Approximation against OPT and RandomSelection on a smaller instance (right).

References

Ioannis Caragiannis et al. (2022) "The metric distortion of multiwinner voting." Artificial Intelligence, 2022.

Bailey Flanigan et al. (2021) "Fair algorithms for selecting citizens' assemblies." Nature, 596:548-552, 2021

Nirman Kumar and Benjamin Raichel (2013). "Fault tolerant clustering revisited." In: Proc. Proceedings of the 25th Canadian Conference on Computational Geometry (CCCG) 2013.

